Porphyrin-Fullerene Dyad
J. Phys. Chem. A, Vol. 105, No. 2, 2001 331
1995. (b) Moser, C. C.; Keske, J. M.; Warncke, K.; Farid, R. S.; Dutton, P.
L. Nature 1992, 355, 796.
(3) (a) Marcus, R. A. Annu. ReV. Phys. Chem. 1964, 15, 155. (b)
Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265. (c) Marcus,
R. A. Angew. Chem. Int. Ed. Engl. 1993, 32, 1111.
(4) (a) Sariciftci, N. S. Prog. Quant. Electr. 1995, 19, 131. (b) Jensen,
A. W.; Wilson, S. R.; Schuster, D. I. Bioorg. Med. Chem. 1996, 4, 767. (c)
Gust, D.; Moore, T. A.; Moore, A. L. Res. Chem. Intermed. 1997, 23, 621.
(d) Prato, M. J. Mater. Chem. 1997, 7, 1097. (e) Mart´ın, N.; Sa´nchez, L.;
Illescas, B.; Pe´rez, I. Chem. ReV. 1998, 98, 2527. (f) Diederich, F.; Go´mez-
Lo´pez, M. Chem. Soc. ReV. 1999, 28, 263. (g) Sun, Y.-P.; Riggs, J. E.;
Guo, Z.; Rollins, H. W. In Optical and Electronic Properties of Fullerenes
and Fullerene-Based Materials; Shinar, J., Vardeny, Z. V., Kafafi, Z. H.,
Eds.; Marcel Dekker: New York, 2000, pp 43-81.
SCHEME 3: Schematic Energy Levels and Relaxation
1
1
Pathways for ZnP* and C60* in ZnP-C60 in
Benzonitrile; k0 ) 5.0 × 108 s-1, kCS1 ) 9.5 × 109 s-1
,
kCS2 )5.5 × 108 s-1, kCS3 )1.5 × 107 s-1, kCR1 ) 1.3 ×
106 s-1, kISC ) 7.7 × 108 s-1, kT ) 1.1 × 105 s-1
(5) (a) Imahori, H.; Hagiwara, K.; Akiyama, T.; Aoki, M.; Taniguchi,
S.; Okada, T.; Shirakawa, M.; Sakata, Y. Chem. Phys. Lett. 1996, 263,
545. (b) Imahori, H.; Sakata, Y. AdV. Mater. 1997, 9, 537. (c) Imahori, H.;
Sakata, Y. Eur. J. Org. Chem. 1999, 2445. (d) Guldi, D. M. Chem. Commun.
2000, 321. (e) Imahori, H.; Tamaki, K.; Yamada, H.; Yamada, K.; Sakata,
Y.; Nishimura, Y.; Yamazaki, I.; Fujitsuka, M.; Ito, O. Carbon 2000, 38,
1599. (f) Tkachenko, N. V.; Guenther, C.; Imahori, H.; Tamaki, K.; Sakata,
Y.; Fukuzumi, S.; Lemmetyinen, H. Chem. Phys. Lett. 2000, 326, 344. (g)
Guldi, D. M.; Prato, M. Acc. Chem. Res. 2000, 33, 695.
(6) (a) Liddell, P. A.; Sumida, J. P.; Macpherson, A. N.; Noss, L.;
Seely, G. R.; Clark, K. N.; Moore, A. L.; Moore, T. A.; Gust, D. Photochem.
Photobiol. 1994, 60, 537. (b) Kuciauskas, D.; Lin, S.; Seely, G. R.; Moore,
A. L.; Moore, T. A.; Gust, D.; Drovetskaya, T.; Reed, C. A.; Boyd, P. D.
W. J. Phys. Chem. 1996, 100, 15926. (c) Liddell, P. A.; Kuciauskas, D.;
Sumida, J. P.; Nash, B.; Nguyen, D.; Moore, A. L.; Moore, T. A.; Gust, D.
J. Am. Chem. Soc. 1997, 119, 1400. (d) Kuciauskas, D.; Liddell, P. A.;
Lin, S.; Johnson, T. E.; Weghorn, S. J.; Lindsey, J. S.; Moore, A. L.; Moore,
T. A.; Gust, D. J. Am. Chem. Soc. 1999, 121, 8604. (e) Kuciauskas, D.;
Liddell, P. A.; Lin, S.; Stone, S. G.; Moore, A. L.; Moore, T. A.; Gust, D.
J. Phys. Chem. B 2000, 104, 4307.
(7) Bell, T. D. M.; Smith, T. A.; Ghiggino, K. P.; Ranasinghe, M. G.;
Shephard, M. J.; Paddon-Row, M. N. Chem. Phys. Lett. 1997, 268, 223.
(8) (a) Baran, P. S.; Monaco, R. R.; Khan, A. U.; Schuster, D. I.;
Wilson, S. R. J. Am. Chem. Soc. 1997, 119, 8363. (b) Cheng, P.; Wilson,
S. R.; Schuster, D. I. Chem. Commun. 1999, 89. (c) Schuster, D. I.; Cheng,
P.; Wilson, S. R.; Prokhorenko, V.; Katterle, M.; Holzwarth, A. R.;
Braslavsky, S. E.; Klihm, G.; Williams, R. M.; Luo, C. J. Am. Chem. Soc.
1999, 121, 11599.
(9) (a) Da Ros, T.; Prato, M.; Guldi, D. M.; Alessio, E.; Ruzzi, M.;
Pasimeni, L. Chem. Commun. 1999, 635. (b) Guldi, D. M.; Luo, C.; Prato,
M.; Dietel, E.; Hirsch, A. Chem. Commun. 2000, 373. (c) Guldi, D. M.;
Luo, C.; Da Ros, T.; Prato, M.; Dietel, E.; Hirsch, A. Chem. Commun.
2000, 375.
in benzonitrile (Scheme 3), photoinduced CS from ZnP to 3C60*
also takes place to yield the charge-separated state, which
corresponds to the rise in absorbance at 1010 nm with a rate
constant of 1.5 × 107 s-1. Given the rate constant for the decay
of 3C60* in benzonitrile (1.1 × 105 s-1), the quantum yield for
formation of the charge-separated state from 3C60* is 0.99 (Table
2). Accordingly, the photoinduced CS occurs from 1ZnP*, 1C60*,
and 3C60*, resulting in formation of the same charge-separated
state with a total quantum yield of almost unity.24 This is
consistent with the quantum yield (Φ ) 0.85)15 determined using
the comparative method (ꢀ1000
) 4700 M-1 cm-1).25 The
nm
resulting charge-separated state recombines to regenerate the
ground state with a rate constant of 1.3 × 106 s-1, which is
about four orders of magnitude smaller than the CS rate from
1ZnP* (9.5 × 109 s-1). This is in sharp contrast with conven-
tional porphyrin-quinone dyads, where the CR rates are much
faster than the CS rates in polar solvents.1,21a-c The accelerated
CS and decelerated CR can be rationalized by the small
reorganization energy of porphyrin-C60 dyads, as compared
with those of conventional donor-acceptor linked systems.
In conclusion, solvent dependence of CS and CR processes
in porphyrin-fullerene dyad has been well established in the
present systems. In particular, solvent dependence of decay
pathway from the charge-separated state to the excited states
of C60 versus the ground state has been clarified in detail. The
resulting ET dynamics can be rationalized by the small
reorganization energy of porphyrin-fullerene systems. Such
information will be helpful for understanding fundamental
properties of ET on donor-acceptor systems and, in turn,
developing artificial photosynthetic systems.
(10) (a) Nierengarten, J.-F.; Schall, C.; Nicoud, J.-F. Angew. Chem. Int.
Ed. 1998, 37, 1934. (b) Armaroli, N.; Diederich, F.; Echegoyen, L.;
Habicher, T.; Flamigni, L.; Marconi, G.; Nierengarten, J.-F. New J. Chem.
1999, 77. (c) Armaroli, N.; Marconi, G.; Echegoyen, L.; Bourgeois, J.-P.;
Diederlich, F. Chem. Eur. J. 2000, 6, 1629.
(11) Tkachenko, N. V.; Rantala, L.; Tauber, A. Y.; Helaja, J.; Hynninen,
P. H.; Lemmetyinen, H. J. Am. Chem. Soc. 1999, 121, 9378.
(12) D′Souza, F.; Deviprasad, G. R.; Rahman, M. S.; Choi, J.-p. Inorg.
Chem. 1999, 38, 2157.
(13) (a) Imahori, H.; Hagiwara, K.; Akiyama, T.; Taniguchi, S.; Okada,
T.; Sakata, Y. Chem. Lett. 1995, 265. (b) Imahori, H.; Sakata, Y. Chem.
Lett. 1996, 199. (c) Imahori, H.; Hagiwara, K.; Aoki, M.; Akiyama, T.;
Taniguchi, S.; Okada, T.; Shirakawa, M.; Sakata, Y. J. Am. Chem. Soc.
1996, 118, 11771. (d) Sakata, Y.; Imahori, H.; Tsue, H.; Higashida, S.;
Akiyama, T.; Yoshizawa, E.; Aoki, M.; Yamada, K.; Hagiwara, K.;
Taniguchi, S.; Okada, T. Pure Appl. Chem. 1997, 69, 1951. (e) Tamaki,
K.; Imahori, H.; Nishimura, Y.; Yamazaki, I.; Shimomura, A.; Okada, T.;
Sakata, Y. Chem. Lett. 1999, 227. (f) Imahori, H.; Ozawa, S.; Ushida, K.;
Takahashi, M.; Azuma, T.; Ajavakom, A.; Akiyama, T.; Hasegawa, M.;
Taniguchi, S.; Okada, T.; Sakata, Y. Bull. Chem. Soc. Jpn. 1999, 72, 485.
(g) Yamada, K.; Imahori, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y. Chem.
Lett. 1999, 895.
(14) (a) Imahori, H.; Yamada, K.; Hasegawa, M.; Taniguchi, S.; Okada,
T.; Sakata, Y. Angew. Chem. Int. Ed. Engl. 1997, 36, 2626. (b) Higashida,
S.; Imahori, H.; Kaneda, T.; Sakata, Y. Chem. Lett. 1998, 605. (c) Tamaki,
K.; Imahori, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y. Chem. Commun.
1999, 625. (d) Imahori, H.; Yamada, H.; Ozawa, S.; Ushida, K.; Sakata, Y.
Chem. Commun. 1999, 1165. (e) Fujitsuka, M.; Ito, O.; Imahori, H.;
Yamada, K.; Yamada, H.; Sakata, Y. Chem. Lett. 1999, 721. (f) Imahori,
H.; Yamada, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y. J. Phys. Chem. B
2000, 104, 2099. (g) Imahori, H.; Norieda, H.; Yamada, H.; Nishimura,
Y.; Yamazaki, I.; Sakata, Y.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123,
100.
Acknowledgment. This work was supported by Grants-in-
Aid for COE Research and Scientific Research on Priority Area
of Electrochemistry of Ordered Interfaces and Creation of
Delocalized Electronic Systems from Ministry of Education,
Science, Sports and Culture, Japan. H.I. thanks the Sumitomo
Foundation for financial support.
References and Notes
(1) (a) Wasielewski, M. R. Chem. ReV. 1992, 92, 435. (b) Gust, D.;
Moore, T. A.; Moore, A. L. Acc. Chem. Res. 1993, 26, 198. (c) Paddon-
Row, M. N. Acc. Chem. Res. 1994, 27, 18. (d) Osuka, A.; Mataga, N.;
Okada, T. Pure Appl. Chem. 1997, 69, 797. (e) Blanco, M.-J.; Jime´nez,
M. C.; Chambron, J.-C.; Heitz, V.; Linke, M.; Sauvage, J.-P. Chem. Soc.
ReV. 1999, 28, 293. (f) Verhoeven, J. W. In Electron Transfer; Jortner,
J., Bixon, M., Eds.; John Wiley & Sons: New York, 1999; Part 1, pp
603-644.
(15) Luo, C.; Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, Y. J. Am.
Chem. Soc. 2000, 122, 6535.
(16) Prato, M.; Maggini, M. Acc. Chem. Res. 1998, 31, 519.
(2) (a) Anoxygenic Photosynthetic Bacteria; Blankenship, R. E.,
Madigan, M. T., Bauer, C. E., Eds.; Kluwer Academic Publishers: Dordecht,