and F. Diederich, Angew. Chem., Int. Ed. Engl., 1994, 33, 1366;
9 (a) A. S. Boutorine, H. Tokuyama, M. Takasugi, H. Isobe,
E. Nakamura and C. Hélène, Angew. Chem., Int. Ed. Engl., 1994, 33,
2462; (b) C. A. Mirkin and W. B. Caldwell, Tetrahedron, 1996,
52, 5113; (c) F. Arias, L. A. Godinez, S. R. Wilson, A. E. Kaifer and
L. Echegoyen, J. Am. Chem. Soc., 1996, 118, 6086; (d) H. Imahori
and Y. Sakata, Adv. Mater., 1997, 9, 537; (e) A. Bianco, F.
Gasparrini, M. Maggini, D. Misiti, A. Polese, M. Prato, G.
Scorrano, C. Toniolo and C. Villani, J. Am. Chem. Soc., 1997, 119,
7550; ( f ) A. M. Cassell, W. A. Scrivens and J. M. Tour, Angew.
Chem., Int. Ed. Engl., 1998, 37, 1528; (g) J.-F. Nierengarten,
C. Schall, J.-F. Nicoud, B. Heinrich and D. Guillon, Tetrahedron
Lett., 1998, 39, 5747; (h) T. Ishi-i, K. Nakashima and S. Shinkai,
Chem. Commun., 1998, 1047; (i) T. Da Ros, M. Prato, D. Guldi,
E. Alessio, M. Ruzzi and L. Pasimeni, Chem. Commun., 1999, 635.
10 Pseudorotaxanes have been defined as inclusion complexes in which
one or more thread-like molecules are encircled by one or more ring-
like molecules in such a way that the two ends of the thread are
projected away from the centre of the ring. In a rotaxane (Latin rota,
wheel; axis, axle), the two ends of the thread are terminated by
bulky groups which do not allow the unthreading of the rings—thus,
the components are mutually interlocked forming what has been
termed as a mechanical bond. The prefix pseudo denotes that in a
pseudorotaxane the two or more components are not interlocked,
but are instead free to dissociate since the terminal groups are small
enough to allow passage of the ring. (a) P.-L. Anelli, P. R. Ashton,
N. Spencer, A. M. Z. Slawin, J. F. Stoddart and D. J. Williams,
Angew. Chem., Int. Ed. Engl., 1991, 30, 1036; (b) D. B. Amabilino,
P.-L. Anelli, P. R. Ashton, G. R. Brown, E. Córdova, L. A. Godínez,
W. Hayes, A. E. Kaifer, D. Philp, A. M. Z. Slawin, N. Spencer,
J. F. Stoddart, M. S. Tolley and D. J. Williams, J. Am. Chem. Soc.,
1995, 117, 11142; (c) J.-C. Chambron, C.-O. Dietrich-Buchecker,
J.-F. Nierengarten and J.-P. Sauvage, J. Chem. Soc., Chem.
Commun., 1993, 801; (d) G. S. Hanan, C. R. Arana, J.-M. Lehn and
D. Fenske, Angew. Chem., Int. Ed. Engl., 1995, 34, 1122.
(e) A. Kraus, A. Gügel, P. Belik, M. Walter and K. Müllen,
Tetrahedron, 1995, 51, 9927; ( f ) A. B. Smith III, H. Tokuyama,
R. M. Strongin, G. T. Furst, W. J. Romanow, B. T. Chait, U. A.
Mirza and I. Haller, J. Am. Chem. Soc., 1995, 117, 9359; (g) S.
Lebedkin, S. Ballenweg, J. Gross, R. Taylor and W. Krätschmer,
Tetrahedron Lett., 1995, 36, 4971; (h) J. C. Hummelen, B. Knight,
J. Pavlovich, R. Gonzalez and F. Wudl, Science (Washington), 1995,
269, 1554; (i) G. Schick, K.-D. Kampe and A. Hirsch, J. Chem. Soc.,
Chem. Commun., 1995, 2023; (j) L. A. Paquette and R. J. Graham,
J. Org. Chem., 1995, 60, 2958.
21 For more recent examples of covalent fullerene dimers, see:
(a) P. Timmerman, H. L. Anderson, R. Faust, J.-F. Nierengarten,
T. Habicher, P. Seiler and F. Diederich, Tetrahedron, 1996, 52, 4925;
(b) P. Timmerman, L. E. Witschel and F. Diederich, Helv. Chim.
Acta, 1996, 79, 6; (c) J. Osterodt and F. Vögtle, Chem. Commun.,
1996, 547; (d) J. M. Lawson, A. M. Oliver, D. F. Rothenfluh,
Y.-Z. An, G. A. Ellis, M. G. Ranasinghe, S. I. Khan, A. G. Franz,
P. S. Ganapathi, M. J. Shepard, M. N. Paddon-Row and Y. Rubin,
J. Org. Chem., 1996, 61, 5032; (e) L. A. Paquette and W. E. Trego,
Chem. Commun., 1996, 419; ( f ) H. Irngartinger and A. Weber,
Tetrahedron Lett., 1996, 37, 4137; (g) K. Komatsu, N. Takimoto,
Y. Murata, T. S. M. Wan and T. Wong, Tetrahedron Lett., 1996,
37, 6153; (h) G.-W. Wang, K. Komatsu, Y. Murata and M. Shiro,
Nature (London), 1997, 387, 583; (i) J.-F. Nierengarten, A.
Herrmann, R. R. Tykwinski, M. Rüttimann, F. Diederich, C.
Boudon, J.-P. Gisselbrecht and M. Gross, Helv. Chim. Acta,
1997, 80, 293; (j) T. S. Fabre, W. D. Trelaven, T. D. McCarley,
C. L. Newton, R. M. Landry, M. C. Saravia and R. M. Strongin,
J. Org. Chem., 1998, 63, 3522; (k) A. Gromov, S. Lebedkin,
S. Ballenweg, A. G. Avent, R. Taylor and W. Krätschmer, Chem.
Commun., 1997, 209; (l) J.-F. Nierengarten, L. Oswald and
J.-F. Nicoud, Chem. Commun., 1998, 1545; (m) R. Taylor, M. P.
Barrow and T. Drewello, Chem. Commun., 1998, 2497; (n) Y. Iwasa,
K. Tanoue, T. Mitani, A. Izuoka, T. Sugawara and T. Yagi, Chem.
Commun., 1998, 1411; (o) S. Higashida, H. Imahori, T. Kaneda and
Y. Sakata, Chem. Lett., 1998, 605; (p) K. Komatsu, G.-W. Wang,
Y. Murata, T. Tanaka, K. Fujiwara, K. Yamamoto and M.
Saunders, J. Org. Chem., 1998, 63, 9358; (q) M. Yoshida, F. Sultana,
N. Uchiyama, T. Yamada and M. Iyoda, Tetrahedron Lett., 1999,
40, 735; (r) N. Dragoe, S. Tanibayashi, K. Nakahara, S. Nakao,
H. Shimotani, L. Xiao, K. Kitazawa, Y. Achiba, K. Kikuchi and
K. Nojima, Chem. Commun., 1999, 85.
11 (a) P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glink,
S. Menzer, D. Philp, N. Spencer, J. F. Stoddart, P. A. Tasker and
D. J. Williams, Angew. Chem., Int. Ed. Engl., 1995, 34, 1865; (b)
P. R. Ashton, E. J. T. Chrystal, P. T. Glink, S. Menzer, C. Schiavo,
N. Spencer, J. F. Stoddart, P. A. Tasker and D. J. Williams, Angew.
Chem., Int. Ed. Engl., 1995, 34, 1869; (c) P. R. Ashton, E. J. T.
Chrystal, P. T. Glink, S. Menzer, C. Schiavo, N. Spencer, J. F.
Stoddart, P. A. Tasker, A. J. P. White and D. J. Williams, Chem.
Eur. J., 1996, 2, 709.
12 P. R. Ashton, M. C. T. Fyfe, S. K. Hickingbottom, J. F. Stoddart,
A. J. P. White and D. J. Williams, J. Chem. Soc., Perkin Trans. 2,
1998, 2117.
13 (a) A. G. Kolchinski, D. H. Busch and N. W. Alcock, J. Chem. Soc.,
Chem. Commun., 1995, 1289; (b) P. R. Ashton, P. T. Glink, J. F.
Stoddart, P. A. Tasker, A. J. P. White and D. J. Williams, Chem. Eur.
J., 1996, 2, 729; (c) A. G. Kolchinski, N. W. Alcock, R. A. Roesner
and D. H. Busch, Chem. Commun., 1998, 1437.
22 (a) S. Shinkai, K. Inuzuka, O. Miyakazi and O. Manabe, J. Org.
Chem., 1984, 49, 3440; (b) K. Hiratani and S. Aiba, Bull. Chem. Soc.
Jpn., 1984, 57, 2657.
23 C. Bingel, Chem. Ber., 1993, 126, 1957.
24 (a) C. Bingel, presentation at the conference New Perspectives in
Fullerene Chemistry and Physics, Rome (Italy), 1994; (b) J.-F.
Nierengarten, V. Gramlich, F. Cardullo and F. Diederich, Angew.
Chem., Int. Ed. Engl., 1996, 35, 2101.
14 M.-V. Martínez-Díaz, N. Spencer and J. F. Stoddart, Angew. Chem.,
Int. Ed. Engl., 1997, 36, 1904.
15 M. C. T. Fyfe, P. T. Glink, S. Menzer, J. F. Stoddart, A. J. P. White
and D. J. Williams, Angew. Chem., Int. Ed. Engl., 1997, 36, 2068.
16 P. R. Ashton, A. N. Collins, M. C. T. Fyfe, P. T. Glink, S. Menzer,
J. F. Stoddart and D. J. Williams, Angew. Chem., Int. Ed. Engl., 1997,
36, 59.
17 M. C. Feiters, M. C. T. Fyfe, M.-V. Martínez-Díaz, S. Menzer,
R. J. M. Nolte, J. F. Stoddart, P. J. M. van Kan and D. J. Williams,
J. Am. Chem. Soc., 1997, 119, 8119.
18 P. R. Ashton, I. Baxter, S. J. Cantrill, M. C. T. Fyfe, P. T. Glink,
J. F. Stoddart, A. J. P. White and D. J. Williams, Angew. Chem., Int.
Ed. Engl., 1998, 37, 1294.
19 For fullerene crown ether conjugates, see: (a) F. Diederich, U. Jonas,
V. Gramlich, A. Herrmann, H. Ringsdorf and C. Thilgen,
Helv. Chim. Acta, 1993, 76, 2445; (b) S. R. Wilson and Y. Wu,
J. Chem. Soc., Chem. Commun., 1993, 784; (c) J. Osterodt,
M. Nieger, P.-M. Windscheif and F. Vögtle, Chem. Ber., 1993, 2331;
(d) F. Arias, Q. Xie, Y. Wu, Q. Lu, S. R. Wilson and L. Echegoyen,
J. Am. Chem. Soc., 1994, 116, 6388; (e) J. Osterodt, A. Zett and
F. Vögtle, Tetrahedron, 1996, 52, 4949; ( f ) A. Gügel, A. Kraus,
J. Spickermann, P. Belik and K. Müllen, Angew. Chem., Int. Ed.
Engl., 1994, 33, 559; (g) S. N. Davey, D. A. Leigh, A. E. Moody,
L. W. Tetler and F. A. Wade, J. Chem. Soc., Chem. Commun., 1994,
397.
20 For early examples of covalent fullerene dimers, see: (a) T. Suzuki,
Q. Li, K. C. Khemani, F. Wudl and Ö. Almarsson, J. Am. Chem.
Soc., 1992, 114, 7300; (b) P. J. Fagan, P. J. Krusic, D. H. Evans,
S. A. Lerke and E. Johnston, J. Am. Chem. Soc., 1992, 114, 9697; (c)
M. Yoshida, A. Morishima, Y. Morinaga and M. Iyoda, Tetrahedron
Lett., 1994, 35, 9045; (d) H. L. Anderson, R. Faust, Y. Rubin
25 P. R. Ashton, M. C. T. Fyfe, P. T. Glink, S. Menzer, J. F. Stoddart,
A. J. P. White and D. J. Williams, J. Am. Chem. Soc., 1997, 119,
12514.
26 The signal for the resonance of the benzylic CH2 protons (Hacom
,
Fig. 1) appears as a second-order multiplet as a result of coupling to
the NH2ϩ protons in the complex. Presumably, this coupling results
from the “freezing-out” of the exchange of the NH2ϩ protons—with
H2O present in the solvent—once the –NH2ϩ– centre is encircled by
the crown ether.
27 The geometry optimisation of the complex [1ؒ2-H][PF6] was carried
out by molecular mechanics calculations using the force field
SYBYL as implemented in the program package SPARTAN 4.0,
Wavefunction Inc. 18401 Von Karman, Suite 370, Irvine, CA 92715
(USA).
28 (a) M. Montalti, R. Ballardini, L. Prodi and V. Balzani, Chem.
Commun., 1996, 2011; (b) P. R. Ashton, R. Ballardini, V. Balzani, M.
Gómez-López, S. E. Lawrence, M.-V. Martínez-Díaz, M. Montalti,
A. Piersanti, L. Prodi, J. F. Stoddart and D. J. Williams, J. Am.
Chem. Soc., 1997, 119, 10641; (c) M. Montalti and L. Prodi, Chem.
Commun., 1998, 1461; (d) P. R. Ashton, V. Balzani, O. Kocian,
L. Prodi, N. Spencer and J. F. Stoddart, J. Am. Chem. Soc., 1998,
120, 11190.
29 For photoinduced energy and electron transfer processes in
supramolecular systems in which the donor–acceptor components
are held together by hydrogen bonds: (a) Y. Aoyama, M. Asakawa,
Y. Matsui and H. Ogoshi, J. Am. Chem. Soc., 1991, 113, 6233;
(b) V. Král, S. L. Springs and J. L. Sessler, J. Am. Chem. Soc., 1995,
117, 8881; (c) J. A. Roberts, J. P. Kirby and D. G. Nocera, J. Am.
Chem. Soc., 1995, 117, 8051; (d) F. D. Lewis, J.-S. Yang and C. L.
Stern, J. Am. Chem. Soc., 1996, 118, 2772; (e) T. Arimura, C. T.
Brown, S. L. Springs and J. L. Sessler, Chem. Commun., 1996, 2293.
J. Chem. Soc., Perkin Trans. 2, 1999, 1577–1586
1585