2532
J. Kang et al. / Tetrahedron: Asymmetry 10 (1999) 2523–2533
in hexane) produced the pure hydroxy enantiomer (R)-2 (0.21 g, 84.5%) as a white solid. TLC (20%
25
1
EtOAc/n-hexane) Rf 0.52; mp 98–100°C; [α]D −40.0 (c=1, CHCl3); H NMR (300 MHz, CDCl3) δ
0.81 (t, J=7.1 Hz, 3H), 0.88 (t, J=7.2 Hz, 3H), 1.46 (q, J=7.1 Hz, 2H), 1.67 (q, J=7.2 Hz, 2H), 2.65
(dd, J=7.2 Hz, J=7.2 Hz, 2H), 3.80 (br s, 1H), 4.81 (s, 1H), 7.36–7.53 (m, 5H), 7.91 (d, J=7.2 Hz, 2H);
13C NMR (75 MHz, CDCl3) δ 165.05, 156.20, 139.54, 134.09, 133.65, 133.48, 128.57, 127.20, 126.91,
120.05, 80.47, 49.46, 38.56, 29.34, 23.54, 8.92; IR (KBr) 3180, 3058, 2940, 1588, 1440 cm−1; MS (EI,
70 eV) m/e (relative intensity) 267 (M+, 21), 238 (M−CHO, 31), 169 (M−C6H10O, 100), 77 (C6H5,
11). Anal. calcd for C18H21NO: C, 80.86; H, 7.92; N, 5.24, found: C, 80.90; H, 7.84; N, 5.26; HPLC
resolution Chiralcel OD; eluent 10% IPA/n-hexane; flow rate (mL/min) 0.5; retention time (min) 16.22
(−). The hydroxy enantiomer (S)-2 (0.26 g, 83.7%) was obtained from the carbamic N-oxide (S)-10 (0.50
g) in an analogous manner and its spectral data were the same except the specific rotation and melting
point. TLC (20% EtOAc/n-hexane) Rf 0.52; mp 110–111°C; [α]D25 +29.4 (c=1, CHCl3). Anal. calcd for
C18H21NO: C, 80.86; H, 7.92; N, 5.24, found: C, 80.87; H, 7.91; N, 5.17; HPLC resolution chiralcel OD;
eluent 10% IPA/n-hexane; flow rate (mL/min) 0.5; retention time (min) 15.34 (+).
3.10. A typical procedure for the enantioselective addition of diethylzinc to aldehydes in the presence of
chiral pyridyl alcohols
To a solution of an aldehyde (1.00 mmol) and the chiral pyridyl carbinol (0.05 mmol) in toluene (4.0
mmol) was added diethylzinc (1 M in n-hexane, 2.0 mmol) at 0°C. The mixture was slowly warmed up
to ambient temperature over 24 h and quenched with 1 M HCl solution at 0°C. The aqueous phase was
extracted with dichloromethane, and the combined extracts were dried over anhydrous sodium sulfate
and evaporated through a rotary evaporator. The residue was purified by flash column chromatography
on silica gel (EtOAc in hexane). The secondary alcohols were identified by comparing the 1H NMR, IR
spectra and retention time of GC or HPLC resolution with those of standard samples.2
Acknowledgements
We are thankful to the Korea Research Foundation for generous support (1997-001-D00510) and Dr.
Kwan Mook Kim for the X-ray diffraction data and Dr. Ae Nim Pae for molecular modeling assistance.
References
1. (a) Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 49. (b) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833.
(c) Oguni, N.; Matsuda, Y.; Kaneko, T. J. Am. Chem. Soc. 1988, 110, 7877. (d) Hones, G. B.; Heaton, S. B. Tetrahedron:
Asymmetry 1993, 4, 261. (e) Williams, J. M. J.; Allen, J. V.; Frost, C. G. Tetrahedron: Asymmetry 1993, 4, 649. (f) Knochel,
P.; Singer, D. Chem. Rev. 1993, 93, 2117. (g) Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2823. (h) Kitamura, M.; Suga,
S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071. (i) Soai, K.; Ookawa, A. J. Chem. Soc., Chem. Commun.
1986, 412. (j) Ookawa, A.; Soai, K. J. Chem. Soc., Perkin Trans. 1 1987, 1465. (k) Soai, K.; Yokoyama, S.; Hayasaka, T.
J. Org. Chem. 1991, 56, 4264.
2. (a) Kang, J.; Lee, J. W.; Kim, J. I. J. Chem. Soc., Chem. Commun. 1994, 2009. (b) Kang, J.; Kim, D. S.; Kim, J. I. Synlett
1994, 843. (c) Kang, J.; Kim, J. W.; Lee, J. W.; Kim. D. S.; Kim, J. I. Bull. Korean Chem. Soc. 1996, 17, 1135.
3. (a) Bolm, C.; Schlingloff, G.; Harms, K. Chem. Ber. 1992, 125, 1191. (b) Hawkins, J.; Sharpless, B.; Tetrahedron Lett.
1987, 28, 2825. (c) Williams, D. R.; Fromhold, M. G. Synlett 1997, 523. (d) Ishizaki, M.; Fujita, K-i.; Shimamoto, M.;
Hoshino, O. Tetrahedron: Asymmetry 1994, 5, 411. (e) Ishizaki, M.; Hoshino, O. Chem. Lett. 1994, 1337. (f) Kotsuki, H.;
Nakagawa, Y.; Moriya, N.; Tateishi, H.; Ochi, M.; Takayoshi, S.; Isobe, K. Tetrahedron: Asymmetry 1995, 6, 1165. (g)
Kotsuki, H.; Hayakawa, H.; Tateishi, H.; Wakao, M.; Shiro, M. Tetrahedron: Asymmetry 1998, 9, 3203. (h) Chelucci, G.;