Paper
RSC Advances
Notes and references
1 (a) M. Weiss, R. Buhl, M. Medve and E. M. Schneider, Crit.
Care Med., 1997, 25, 128; (b) J. Lee, J. Lee, M. Kang,
M. Shin, J. M. Kim, S. U. Kang, J. O. Lim, H. K. Choi,
Y. G. Suh, H. G. Park, U. Oh, H. D. Kim, Y. H. Park,
H. J. Ha, Y. H. Kim, A. Toth, Y. Wang, R. Tran, L. V. Pearce,
D. J. Lundberg and P. M. Blumberg, J. Med. Chem., 2003,
´
´
46, 3116; (c) E. Rodrıguez-Fernandez, J. L. Manzano,
J. J. Benito, R. Hermosa, E. Monte and J. J. Criado, J. Inorg.
Biochem., 2005, 99, 1558; (d) O. J. D'Cruz and F. M. Uckun,
Curr. HIV Res., 2006, 4, 329; (e) I. V. Daele, H. Munier-
Lehmann, M. Froeyen, J. Balzarini and S. V. Calenbergh, J.
Med. Chem., 2007, 50, 5281; (f) M. I. C. Begum and
K. M. Khan, Nat. Prod. Res., 2009, 23, 1719; (g) Y. Touati-
Scheme 3 Proposed mechanism.
On the basis of relevant reports in literatures8d–f and our
experimental results, a tentative mechanism for this trans-
formation was proposed by taking 2-naphthylamine 1a and
diethylamine 3a as examples (Scheme 3).15 Initially, interme-
diate I is formed by nucleophilic attack of diethylamine 3a to
carbon disulde. Subsequently, 2-naphthylamine 1a attacks the
intermediate I, affording the desired products 4a with
concomitant release of H2S.
´
Jallabe, E. Bojnik, B. Legrand, E. Mauchauffee,
N. N. Chung, P. W. Schiller, S. Benyhe, M. C. Averlant-Petit,
J. Martinez and J. F. Hernandez, J. Med. Chem., 2013, 56,
5964; (h) L. Y. Ma, Y. C. Zheng, S. Q. Wang, B. Wang,
Z. R. Wang, L. P. Pang, M. Zhang, J. W. Wang, L. Ding,
J. Li, C. Wang, B. Hu, Y. Liu, X. D. Zhang, J. J. Wang,
Z. J. Wang, W. Zhao and H. M. Liu, J. Med. Chem., 2015,
58, 1705.
Conclusions
2 (a) N. G. Gratz, Bull. W. H. O., 1973, 48, 469; (b) G. Y. Sarkis
and E. D. Faisal, J. Heterocycl. Chem., 1985, 22, 137; (c)
C. Walpole, S. Y. Ko, M. Brown, D. Beattie, E. Campbell,
F. Dickenson, S. Ewan, G. A. Hughes, M. Lemaira,
J. Lerpiniere, S. Patel and L. Urban, J. Med. Chem., 1998,
41, 3159; (d) H. Kayser and P. Eilinger, Pest Manage. Sci.,
2001, 57, 975; (e) B. L. Wang, H. W. Zhu, Y. Ma,
L. X. Xiong, Y. Q. Li, Y. Zhao, J. F. Zhang, Y. W. Chen,
S. Zhou and Z. M. Li, J. Agric. Food Chem., 2013, 61, 5483.
3 (a) D. G. Patil and M. R. Chedekel, J. Org. Chem., 1984, 49,
997; (b) P. C. Kearney, M. Fernandez and J. A. Flygare, J.
In conclusion, we have developed an efficient and versatile
protocol for the preparation of thioureas and oxazolidine-
thiones from amines and carbon disulde via a cascade reac-
tion sequence. This approach features mild reaction conditions,
good compatibility with different amines as well as broad
substrate scopes. Further investigations on biological activity of
the synthesized thioureas and oxazolidinethiones are ongoing
in our laboratory.
Experimental
Org.
Chem.,
1998,
63,
196;
(c)
M.
Kidwai,
A mixture of amine 1 (0.2 mmol), carbon disulde 2 (0.24
mmol), amine 3 (0.24 mmol) or amine 5 (0.2 mmol), carbon
disulde 2 (0.24 mmol) in DMSO (2 mL) was added in a 5 mL
glass tube, which was stirred at 70 ꢀC for 1–12 h. When the
reaction was completed, it was mixed with water and ethyl
acetate. The reaction mixture was extracted three times with
ethyl acetate. The combined organic layer was dried over
anhydrous magnesium sulfate and ltered. The ltrate was
evaporated under vacuum and the residue was puried by ash
column chromatography on silica gel (eluting with petroleum
ether-ethyl acetate) to provide the desired products 4 or 6.
R. Venkataramanan and B. Dave, Green Chem., 2001, 3,
278; (d) D. Anshu, A. Kapil and S. Meha, Synth. Commun.,
2004, 34, 1141; (e) R. Yella, H. Ghosh and B. K. Patel, Green
´
Chem., 2008, 10, 1307; (f) I. Cano, E. Gomez-Bengoa,
A. Landa, M. Maestro, A. Mielgo, I. Olaizola, M. Oiarbide
and C. Palomo, Angew. Chem., Int. Ed., 2012, 51, 10856; (g)
J. Zhao, H. Huang, W. Wu, H. Chen and H. Jiang, Org.
Lett., 2013, 15, 2604.
4 (a) D. J. Ager, I. Prakash and D. R. Schaad, Chem. Rev., 1996,
96, 835; (b) P. R. Schreiner, Chem. Soc. Rev., 2003, 32, 289; (c)
P. M. Pihko, Angew. Chem., Int. Ed., 2004, 43, 2062; (d)
Y. Hoashi, T. Okino and Y. Takemoto, Angew. Chem., Int.
Ed., 2005, 44, 4032; (e) T. Inokuma, Y. Hoashi and
Y. Takemoto, J. Am. Chem. Soc., 2006, 128, 9413; (f)
Y. Zhang, Y. K. Liu, T. R. Kang, Z. K. Hu and Y. C. Chen, J.
Conflicts of interest
There are no conicts to declare.
´
´
´
Am. Chem. Soc., 2008, 130, 2456; (g) A. Madarasz, Z. Dosa,
´
´
´
S. Varga, T. Soos, A. Csampai and I. Papai, ACS Catal.,
2016, 6, 4379.
Acknowledgements
This study was supported by the National Key Research Project
(2017YFA0506000), National Natural Science Foundation of
China (21807080, 21572166), Natural Science Foundation of
Zhejiang Province (LQ18B020004).
5 (a) F. Kurzer and K. Douraghi-Zadeh, Chem. Rev., 1967, 67,
107; (b) B. Love, P. E. Bender, H. Bowman, A. Helt,
R. Mclean and T. Jen, J. Med. Chem., 1972, 15, 1024; (c)
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 26768–26772 | 26771