1218
B. Sieng et al.
LETTER
(10) Aqueous workup has to be precluded. The treatment of 6
After purification by silica gel chromatography, (+)-febri-
25
under Swern conditions followed by classical aqueous
workup lead only to the formation of the hemiaminal which
is then totally unreactive with allyltitanium complex (S,S)-
Ti-I.
fugine was isolated in 38% yield {mp 137–139 °C, [a]D
+26.9 (c 0.26, EtOH); natural product:3b mp 139–140 °C,
25
1
[a]D +28 (c 0.5, EtOH)}. The melting point, H NMR
and 13C NMR data, and optical rotation for the synthe-
sized (+)-febrifugine are in agreement with the reported
values.8a,f
(11) The allyltitanium complex (S,S)-Ti-I was prepared
according to: Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs,
G.; Rothe-Streit, P.; Schwarzenbach, F. J. Am. Chem. Soc.
1992, 114, 2321.
In conclusion, we were able to develop a short convergent
synthesis of febrifugine in ten steps from N-Boc 4-ami-
nobutan-1-ol by using an enantioselective allyltitanation
to control the C3 stereogenic center, an intramolecular
1,4-addition of an amine onto an a,b-unsaturated ketone
to build the piperidine ring, and a Wittig reaction to intro-
duce the b-keto 4-hydroxyquinazoline. This strategy can
be applied to the synthesis of derivatives that can be used
for the study of structure–reactivity relationship.
(12) Preparation of 8
Allylmagnesium chloride (1.47 mL, 2 M in THF, 2.93
mmol, 1.1 equiv) was added at 0 °C to a mixture of
cyclopentadienyl[(4S,trans)-2,2-dimethyl-a,a,a¢,a¢-
tetraphenyl-1,3-dioxolane-4,5-dimethanolato-O,O¢]titanium
chloride (2.12 g, 3.46 mmol, 1.3 equiv) in anhyd Et2O (30
mL). The orange mixture was stirred for 2 h at 0 °C and
cooled to –78 °C. To this mixture was added dropwise a
solution of the crude aldehyde 7 (498 mg, 2.66 mmol, 1
equiv) in Et2O (2.4 mL) via cannula. After 4 h at –78 °C,
H2O (14 mL) was added and the mixture was stirred
overnight at r.t. and then filtered through Celite. The organic
phase was washed with brine (2 × 40 mL), dried over
MgSO4, and concentrated in vacuo. The crude residue was
purified on silica gel (PE–EtOAc, 7:3) to afford 8 (408 mg,
1.78 mmol, 67% for two steps) as a yellow oil.
References and Notes
(1) Winstanley, P. A. Parasitol. Today 2000, 16, 146.
(2) Zhu, S.; Hudson, T. H.; Kyle, D. E.; Lin, A. J. Med. Chem.
2002, 45, 3491.
(3) (a) Koepfli, J. B.; Mead, J. F.; Brockman, J. A. Jr. J. Am.
Chem. Soc. 1947, 69, 1837. (b) Koepfli, J. B.; Mead, J. F.;
Brockman, J. A. Jr. J. Am. Chem. Soc. 1949, 71, 1048.
(4) WHO Report, Meeting on Antimalarial Drug Development,
Shangai, China, 16-17 November 2001.
(5) Chien, P. L.; Cheng, C. C. J. Med. Chem. 1970, 13, 867.
(6) Pharmacology and Applications of Chinese Material
Medecine; Chang, H. M.; But, P. P. H., Eds.; World
Scientific Publishing: Singapore, 1986-1987.
(7) For racemic syntheses of febrifugine, see: (a) Baker, B. R.;
McEvoy, F. J.; Schaub, R. E.; Joseph, J. P.; Williams, J. H.
J. Org. Chem. 1953, 18, 178. (b) Burgess, L. E.; Gross, E.
K. M.; Jurka, J. Tetrahedron Lett. 1996, 37, 3255.
(c) Takeuchi, Y.; Hattori, M.; Abe, H.; Harayama, T.
Synthesis 1999, 1814. (d) Takeuchi, Y.; Oshige, M.; Azuma,
K.; Abe, H.; Harayama, T. Chem. Pharm. Bull. 2005, 53,
868.
(8) For syntheses of (+)-febrifugine, see: (a) Kobayashi, S.;
Ueno, M.; Suzuki, R.; Ishitani, H.; Kim, H.-S.; Wataya, Y.
J. Org. Chem. 1999, 64, 6833. (b) Takeuchi, Y.; Azuma, K.;
Takakura, K.; Abe, H.; Harayama, T. Chem. Commun. 2000,
1643. (c) Taniguchi, T.; Ogasawara, K. Org. Lett. 2000, 2,
3193. (d) Takeuchi, Y.; Azuma, K.; Takakura, K.; Abe, H.;
Kim, H.-S.; Wataya, Y.; Harayama, T. Tetrahedron 2001,
57, 1213. (e) Okitsu, O.; Suzuki, R.; Kobayashi, S. J. Org.
Chem. 2001, 66, 809. (f) Ooi, H.; Urushibara, A.; Esumi, T.;
Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2001, 3, 953.
(g) Huang, P.-Q.; Wei, B.-G.; Ruan, Y.-P. Synlett 2003,
1663. (h) Katoh, M.; Matsune, R.; Nagase, H.; Honda, T.
Tetrahedron Lett. 2004, 45, 6221. (i) Ashoordazeh, A.;
Caprio, V. Synlett 2005, 346. (j) Katoh, M.; Matsune, R.;
Honda, T. Heterocycles 2006, 67, 189.
The ee of 8 was determined by 1H NMR after derivatization
with (S)- and (R)-methoxyphenylacetic acids. See: (a) Dale,
J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
(b) Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P.
G.; Balkovec, J. M. J. Org. Chem. 1986, 51, 2370. (c)Seco,
J. M.; Quiňoà, E.; Riguera, R. Tetrahedron: Asymmetry
2001, 12, 2915.
(13) Wipf, P.; Rector, S. R.; Takahashi, H. J. Am. Chem. Soc.
2002, 124, 14848.
(14) Scholl, M.; Ding, S.; Woo Lee, S.; Grubbs, R. H. Org. Lett.
1999, 1, 953.
(15) A better yield was observed for the oxidative cleavage of the
double bond when performed in two separated steps.
(16) The yield for 14 corresponds to the isolated yield but the
protection did not reach completion (71% conversion).
(17) A cross-metathesis reaction using methyl vinyl ketone and
the protected allylic alcohol 15, in the presence of the
Grubbs–Hoveyda catalyst failed.
(18) Compound 17: [a]D25 –22.1 (c 1.17, CHCl3). IR (neat): 2979,
1678, 1612, 1365, 1118, 1028, 775, 734, 697 cm–1. 1H NMR
(400 MHz, CDCl3): d = 8.29 (dd, J = 8.0, 1.5 Hz, 1 H), 7.90
(s, 1 H), 7.80–7.73 (m, 2 H), 7.51 (ddd, J = 8.0, 6.8, 1.6 Hz,
1 H), 6.94 (dd, J = 16.0, 5.8 Hz, 1 H), 6.46 (dd, J = 16.0, 1.3
Hz, 1 H), 4.99 (d, J = 1.6 Hz, 2 H), 4.65 (dABsyst, J = 6.9 Hz,
1 H), 4.63 (dABsyst, J = 6.9 Hz, 1 H), 4.30, (m, 1 H), 3.61 (br
t, J = 6.8 Hz, 2 H), 3.39 (s, 3 H), 1.76–1.60 (m, 4 H), 1.51 (s,
18 H). 13C NMR (100 MHz, CDCl3): d = 191.0 (s), 160.9 (s),
152.8 (2 s), 148.6 (d), 148.2 (s), 146.4 (d), 134.4 (d), 127.6
(d), 127.4 (d), 126.8 (d), 126.3 (d), 121.9 (s), 95.1 (t), 82.3
(2s), 75.2 (q), 55.8 (d), 52.6 (t), 45.9 (t), 31.8 (t), 28.1 (6 q),
24.6 (t).
(19) Efficient isomerization of isofebrifugine into febrifugine by
heating in water has been reported by Takeuchi et al., see ref.
8d.
(9) Hudson, R. F.; Chopard, P. A. J. Org. Chem. 1963, 28, 2446.
Synlett 2008, No. 8, 1216–1218 © Thieme Stuttgart · New York