Please do not adjust margins
Green Chemistry
Page 4 of 6
COMMUNICATION
Journal Name
version could be prepared in an identical yield simply by using
commercially available 13C-labeled chloroform instead of
chloroform in the reaction conditions for 3lp [eqn (4)].
Recently, transition-metal-free carbonylations of aryl halides with
CO were proposed to involve a radical process.21 To gain further
insight of whether our transition-metal-free carbonylative
transformation is a free radical process, a radical probe 1-(allyloxy)-
2-iodobenzene (1u) was subjected to the normal conditions and
DOI: 10.1039/C9GC00598F
A. H. Kamaruddin and S. Bhatia, Process Biochem., 2005, 40,
3526; (e) M. Cueto, P. R. Jensen, C. Kauffman, W. Fenical, E.
Lobkovsky and J. Clardy, J. Nat. Prod., 2001, 64, 1444.
E. J. Jeong, Y. Liu, H. Lin and M. Hu, Drug Metab. Dispos.,
2005, 33, 785.
A. T. Lindhardt, R. Simmonsen, R. H. Taaning, T. M. Gøgsig, G.
N. Nilsson, G. Stenhagen, C. S. Elmore and T. Skrydstrup, J.
Labelled Compd. Radiopharm., 2012, 55, 411.
2
3
only
afforded
a
cyclization
product,
3-methyl-2,3-
4
5
T. G. Kantor, Pharmacotherapy, 1986, 6, 93.
T. Ishiyama, H. Kizaki, N. Miyaura and A. Suzuki, Tetrahedron
Lett., 1993, 34, 7595.
dihydrobenzofuran (3ua) based on GC/MS analysis [eqn (5)],27
implying that aryl radical intermediate is present in the transition-
6
For selective examples of carbonylative Suzuki couplings of
aryl halides with CO, see: (a) H. Neumann, A. Brennführer
and M. Beller, Chem. Eur. J., 2008, 14, 3645; (b) P. Gautam,
M. Dhiman, V. Polshettiwar and B. M. Bhanage, Green
Chem., 2016, 18, 5890; (c) M. Z. Cai, J. Peng, W. Y. Hao and
G. D. Ding, Green Chem., 2011, 13, 190; (d) B. M. O’Keefe, N.
Simmons and S. F. Martin, Org. Lett., 2008, 10, 5301; (e) M. J.
Dai, B. Liang, C. H. Wang, Z. J. You, J. Xiang, G. B. Dong, J. H.
Chen and Z. Yang, Adv. Synth. Catal., 2004, 346, 1669; (f) Q.
Zhou, S. Wei and W. Han, J. Org. Chem., 2014, 79, 1454; (g)
P. Wójcik, M. Mart, S. Ulukanli and A. M. Trzeciak, RSC Adv.,
2016, 6, 36491; (h) H. Li, M. Yang, Y. Qi and J. Xue, Eur. J.
Org. Chem., 2011, 2662.
For selective reviews on transition-metal-catalyzed
carbonylations of aryl halides or aryl pseudohalides with CO,
see: (a) X.-F. Wu, H. Neumann and M. Beller, Chem. Soc.
Rev., 2011, 40, 4986; (b) A. Brennführer, H. Neumann and M.
Beller, Angew. Chem., Int. Ed., 2009, 48, 4114; (c) J.-B. Peng,
F.-P. Wu and X.-F. Wu, Chem. Rev., 2019, DOI:
10.1021/acs.chemrev.8b00068; (d) Y. Li, Y. Hu and X.-F. Wu,
Chem. Soc. Rev., 2018, 47, 172; (e) W. W. Fang, H. B. Zhu, Q.
Y. Deng, S. L. Liu, X. Yu. Liu, Y. J. Shen and T. Tu, Synthesis,
2014, 46, 1689; (f) R. Grigg and S. P. Mutton, Tetrahedron,
2010, 66, 5515.
For selected reviews on carbonylations using CO surrogates,
see: (a) J.-B. Peng, X. X. Qi and X.-F. Wu, Synlett, 2017, 28,
175; (b) S. D. Friis, A. T. Lindhardt and T. Skrydstrup, Acc.
Chem. Res., 2016, 49, 594; (c) P. Gautam and B. M. Bhanage,
Catal. Sci. Technol., 2015, 5, 4663; (d) L. P. Wu, Q. Liu, R.
Jackstell and M. Beller, Angew. Chem., Int. Ed., 2014, 53,
6310; (e) H. Konishi and K. Manabe, Synlett, 2014, 25, 1971;
(f) L. R. Odell, F. Russo and M. Larhed, Synlett, 2012, 23, 685;
(g) T. Morimoto and K. Kakiuchi, Angew. Chem., Int. Ed.,
2004, 43, 5580.
metal-free carbonylation process.21e,28 According to our
21, 22a
experimental results and previous studies,16,
we propose a
radical-chain reaction mechanism for this reaction (Scheme 4).
Initially, aryl halide thermally dissociates with the assistance of a
base21f,29 to give an aryl radical, which further reacts with CO (in situ
generated from chloroform and CsOH.H2O) to provide an acyl
radical intermediate.21c When the amount of CHCl3 was increased
from 3 equiv to 4 equiv, the yields were almost the same in 3 h
(23% and 25%, respectively), suggesting that in-situ CO generation
may be not the rate-determining step in the reaction. Then, the acyl
radical reacts with arylboronic acid under the assistance of a base
to afford a biaryl ketone radical anion.21b,21f Subsequently, SET
(single electron transfer) from the biaryl ketone radical anion to an
aryl halide gives the desired biarylketone product and regenerates a
reactive aryl radical, thus completing a radical chain.21b, 21f
In conclusion, we have developed a radical carbonylative Suzuki
coupling using stoichiometric CHCl3 instead of CO gas to deliver a
range of biaryl ketones in good to excellent yields with high
selectivities. Notably, this reaction was entirely transition-metal-
free and was utilizing CO precursor to avoid the drawbacks of
gaseous CO. This protocol provides an attractive alternative to
7
8
classical
metal-catalyzed
carbonylative
transformations.
Importantly, the method is applicable to isotope labeling of biaryl
ketones simply by using the commercially available 13C-labeled
chloroform. Moreover, the environmentally friendly and
operationally simple method was successfully applied to the
synthesis of the marketed pharmaceutical Fenofibric acid and a
potent inhibitor of the tumor growth, naphthyl phenstatin. Further
studies focused on the application to other carbonylation reactions
are on going in our laboratory, and will be reported in due course.
The work was sponsored by the Natural Science Foundation of
China (21776139, 21302099), the Natural Science Foundation of
Jiangsu Province (BK20161553), the Natural Science Foundation of
Jiangsu Provincial Colleges and Universities (16KJB150019), the Qing
Lan project, and the Priority Academic Program Development of
Jiangsu Higher Education Institutions.
9
F. Jafarpour, P. Rashidi-Ranjbar and A. O. Kashani, Eur. J. Org.
Chem., 2011, 2128.
10 (a) K. M. Bjerglund, T. Skrydstrup and G. A. Molander, Org.
Lett., 2014, 16, 1888; (b) A. Ahlburg, A. T. Lindhardt, R. H.
Taaning, A. E. Modvig and T. Skrydstrup, J. Org. Chem., 2013,
78, 10310.
11 P. Gautam, R. Gupta and B. M. Bhanage, Eur. J. Org. Chem.,
2017, 3431.
12 (a) X. X. Qi, C. Zhou, J.-B. Peng, J. Ying and X.-F. Wu,
Tetrahedron Lett., 2017, 58, 4153; (b) X. X. Qi, L. B. Jiang, H.
P. Li and X.-F. Wu, Chem.-Eur. J., 2015, 21, 17650.
13 (a) P. R. Nitha, M. M. Joseph, G. Gopalan, K. K. Maiti, K. V.
Radhakrishnan and P. Das, Org. Biomol. Chem., 2018, 16,
6430; (b) P. Kannaboina, G. Raina, K. A. Kumar and P. Das,
Chem. Commun., 2017, 53, 9446; (c) S. N. Gockel and K. L.
Hull, Org. Lett., 2015, 17, 3236; (d) Z. Y. Li and L. Wang, Adv.
Synth. Catal., 2015, 357, 3469.
14 X. L. Liu, B. Li and Z. H. Gu, J. Org. Chem., 2015, 80, 7547.
15 G. L. Sun, M. Lei and L. H. Hu, RSC Adv., 2016, 6, 28442.
16 H. Y. Zhao, H. Y. Du, X. R. Yuan, T. J. Wang and W. Han, Green
Chem., 2016, 18, 5782.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
(a) K. Surana, B. Chaudhary, M. Diwaker and S. Sharma, Med.
Chem. Commun., 2018, 9, 1803; (b) K. Maeyama, K.
Yamashita, H. Saito, S. Aikawa and Y. Yoshida, Polym. J.,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins