10.1002/ejoc.201800901
European Journal of Organic Chemistry
COMMUNICATION
radical A followed by homolytic N–S bond cleavage to form the
sulfonyl radical and the imine (Scheme 4). The resulting
transient sulfonyl radical regioselectively adds to the alkyne
moiety of 1 to form vinyl radical species B, which is stabilized by
the aryl group (R3). We think that the reason for low yield when
R3 was Me is due to low stability of B. Addition of the vinyl
radical to the aromatic ring at the ipso position gives spirocyclic
intermediate C, which is oxidized to form carbocation D. Ester
migration to thermodynamically favored carbocation E followed
by aromatization then afforded 3.
mechanistic experiments and DFT calculations.
Acknowledgements
We gratefully acknowledge funding support from JSPS via a
Grant-in-Aid for Scientific Research (C) (for K.S.K., No.
18K05114) and a Waseda University grant for Special Research
Projects (for K.S.K., Project No. 2018K-296).
Conflict of interest
–
2–
2–
S2O8
SO4
SO4
+
N
The authors declare no conflict of interests.
R3
O
Ag(II) Ag(I)
SO2R1
CO2H
SO2R1
R2
SO2R1
O
1
N
N
SO2R1
fast
H+, CO2
Keywords: amino acids • coumarins • oxindoles • silver •
A
B
sulfonamides
R3
R2
R2
[O]
R3
O
R3
SO2R1
[1]
For examples, see: a) “Polysulfones”: M. J. El-Hibri, S. A. Weinberg,
Encyclopedia of Polymer Science and Technology, Wiley, New York,
2002; b) P. Ptrasit, Z. Wang, C. Brideau, C. C. Chan, S. Charleson, W.
Cromlish, D. Ethier, J. F. Evans, A. W. Ford-Hutchinson, J. Y. Gauthier
et al., Bioorg. Med. Chem. Lett. 1999, 9, 1773; c) C. F. Sturino, G.
O’Neill, N. Lachance, M. Boyd, C. Berthelette, M. Labelle, L. Li, B. Roy,
J. Scheigetz, N. Tsou et al., J. Med. Chem. 2007, 50, 794; d) D. C.
Meadows, J. Gervay-Hague, Med. Res. Rev. 2006, 26, 793; e) Y.
Tanetani, K. Kaku, K. Kawai, T. Fujioka, T. Shimizu, Pestic. Biochem.
Physiol. 2009, 95, 47; f) A. V. Ivachtchenko, E. S. Golovina, M. G.
Kadieva, O. D. Mitkin, I. M. Okun, Pharm. Chem. J. 2015, 48, 646.
N. S. Simpkins, Sulfones in Organic Synthesis, Pergamon Press,
Oxford, 1993.
3
SO2R1
SO2R1
– H
R2
O
E
O
O
O
D
C
O
Scheme 4. Proposed mechanism for the formation of coumarins and
spirolactone.
The radical cyclization protocol could be extended to the
difunctionalization of electron-deficient alkenes (Scheme 5, Eq.
4, 5). For instance, under the standard conditions, the reactions
of N-aryl acrylamides 1v and 1w with 2a proceeded smoothly
and afforded corresponding 2-oxindoles 3v and 3w in 77% and
70% yields. Finally, catalytic sulfonylation of 1x was also
achieved and provided isoquinolinedione 3x in 50% yield. In
contrast to our recent silver-catalyzed α-aminoalkylation
reaction,[19] no products derived from the addition of α-
aminoalkyl radical to the N-acryl amides were observed.
[2]
[3]
a) S. Oae, Organic Sulfur Chemistry, CRC, Boca Raton, FL, 2017; b) K.
Schank, The Chemistry of Sulfones and Sulfoxides, Wiley, New York,
1988.
[4]
For pioneering reports: a) B. Nyuyen, E. J. Emmett, M. C. Willis, J. Am.
Chem. Soc. 2010, 132, 16372; b) S. Ye, J. Wu, Chem. Commun. 2012,
48, 10037. For reviews: c) E. J. Emmett, M. C. Willis, Asian J. Org.
Chem. 2015, 4, 602; d) G. Liu, C. Fan, J. Wu, Org. Biomol. Chem.,
2015, 13, 1592; e) D. Zheng, J. Wu, Sulfur Dioxide Insertion Reactions
for Organic Synthesis, Nature Springer, Berlin, 2017; f) G. Qiu, K. Zhou,
L. Gao, J. Wu, Org. Chem. Front. 2018, 5, 691.
standard
conditions
R
Ts
R
[5]
a) B. M. Graybill, J. Org. Chem. 1967, 32, 2931; b) M. Ueda, K.
Uchiyama, T. Kano, Synthesis 1984, 323; c) D. U. Singh, P. R. Singh, S.
D. Samant, Tetrahedron Lett. 2004, 45, 9079.
Eq. 4
+
2a
O
N
O
N
Bn
Bn
1v: R = H
1w: R = Cl
1.2 equiv
3v: R = H, 77%
3w: R = Cl, 70%
[6]
[7]
For a review, see: S. Shaaban, S. Liang, N.-W. Liu, G. Manolikakes,
Org. Biomol. Chem. 2017, 15, 1947.
For reviews: a) M. P. Bertrand, C. Ferreri in Radicals in Organic
Synthesis, Vol. 2 (Ed.: P. Renaud, M. Sibi), Wiley-VCH, Weinheim,
2001, pp. 485-504; b) X.-Q. Pan, J.-P Zou, W.-B. Yi, W. Zhang,
Tetrahedron, 2015, 71, 7481; c) Y. Fang, Z. Luo, X. Xu, RSC Adv. 2016,
6, 59661.
Ts
O
standard
conditions
O
Eq. 5
+
2a
NMe
NMe
1.2 equiv
O
1x
O
[8]
a) T. Keshari, R. Kapoorr, L. D. S. Yadav, Eur. J. Org. Chem. 2016,
2695; b) Y.-Y Jiang, S. Liang, C.-C. Zeng, L.-M. Hu, B.-G. Sun, Green
Chem. 2016, 18, 6311; c) L.-J Wang, M. Chen, L. Qi, Z. Xu, W. Li,
Chem. Commun. 2017, 53, 2056; d) Y. Ning, Q. Ji, P. Liao, E. A.
Anderson, X. Bi, Angew. Chem. Int. Ed. 2017, 56, 13805; e) T. C.
Johnson, B. L. Elbert, A. J. M. Farley, T. W. Gorman, C. Genicot, B.
Lallemand, P. Pasau, J. Flasz, J. L. Castro, M. MacCoss, D. J. Dixon, R.
S. Paton, C. J. Schofield, M. D. Smith, M. C. Willis, Chem. Sci. 2018, 9,
629; f) R. J. Griffiths, W. C. Kong, S. A. Richards, G. A. Burley, M. C.
Willis, E. P. A. Talbot, Chem. Sci. 2018, 9, 2295; g) H. Yue, C. Zhu, M.
Rueping, Angew. Chem. Int. Ed. 2018, 57, 1371.
3x, 50%
Scheme 5. Synthesis 2-oxindoles and isoquinolinedione.
In summary, we have described the first catalytic
sulfonylation reaction using sulfonamides prepared from α-amino
acids. The reactions proceeded via decarboxylation and N-S
bond cleavage followed by radical addition/cyclization to form a
C-S bond and C-C bond under moderate conditions. A broad
scope of functional groups was tolerated and gave sulfonylated
[9]
a) X. Li, X. Xu, C. Zhou, Chem. Commun. 2012, 48, 12240; b) W. Wei,
J. Wen, D. Yang, M. Guo, Y. Wang, J. You, H. Wang, Chem. Commun.
2015, 51, 768; c) W. Yu, P. Hu, Y. Fan, C. Yu, X. Yan, X. Li, X. Xu, Org.
Biomol. Chem. 2015, 13, 3308; d) Y.-L. Zhu, B. Jiang, W.-J. Hao, J.-K.
coumarins,
2-oxindoles
and
an
isoquinolinedione
regioselectively. Moreover, the mechanism was supported by
This article is protected by copyright. All rights reserved.