3116
J . Org. Chem. 2000, 65, 3116-3122
2-Aza n or bor n yl Alcoh ols: Ver y Efficien t Liga n d s for
Ru th en iu m -Ca ta lyzed Asym m etr ic Tr a n sfer Hyd r ogen a tion of
Ar om a tic Keton es
Diego A. Alonso, Sofia J . M. Nordin, Peter Roth, Tibor Tarnai, and Pher G. Andersson*
Department of Organic Chemistry, Uppsala University, Box 531, S-751 21 Uppsala, Sweden
Marc Thommen and Ulrich Pittelkow
Catalysis Research, Solvias AG, Postfach R-1055.6.17, 4002 Basel, Switzerland
Received December 14, 1999
2-Azanorbornyl-derived amino alcohols were prepared and evaluated as ligands in the Ru(II)-
catalyzed asymmetric transfer hydrogenation of aromatic ketones. To improve selectivity and rate,
the structure of the ligand was optimized. Acetophenone was reduced using 0.5 mol % catalyst in
40 min in 94% ee. This system was also able to reduce a wide range of aromatic ketones to the
corresponding alcohols, while maintaining high enantioselectivities and yields. The effects of catalyst
loading and the presence of cosolvents in the reaction vessel were examined, and a linearity study
was also done.
In tr od u ction
ruthenium catalyst using diamines as chiral ligands.9
Other types of chiral phosphorus and/or nitrogen ligands
have also been used with varying levels of rate, yield,
and selectivity.10 A drawback of this methodology is the
reversibility of the reaction. The equilibrium point de-
pends on the redox potentials of the substrate and the
hydrogen source.1a Consequently, long reaction times may
lead to a drop in the enantiomeric excess. In a study of
ligand acceleration effect in Ru(II)-catalyzed transfer
hydrogenation, it was found that â-amino alcohols showed
the highest reaction rate.1a,11a Despite these finding and
the recent progress in this catalytic enantioselective
Catalytic asymmetric reduction of ketones to form
chiral secondary alcohols is an important transformation
in organic synthesis.1 This enantioselective transforma-
tion can be accomplished by hydride reduction using the
oxazaborolidine catalyst,2 by hydrogenation with for
example BINAP and DuPHOS ligands,3 and by transfer
hydrogenation.4 The latter has been studied extensively
during recent years because of the low cost, operational
simplicity and favorable properties of the hydrogen
donorsusually secondary alcohols or formic acid.5 Ru-
thenium complexes are the most important catalysts in
the asymmetric transfer hydrogenation of ketones, al-
though other metal complexes of samarium,6 rhodium,7
and iridium8 have been used successfully. Recently,
Noyori developed an efficient and highly enantioselective
(8) (a) Zassinovich, G.; Bettella, R.; Mestroni, G.; Breciani-Pahor,
N.; Geremia, S., Randaccio, L. J . Organomet. Chem. 1989, 370, 187.
(b) Mashima, K.; Akutawa, T.; Zhang, X.; Takaya, H.; Taketomi, T.;
Kumobayashi, H.; Akutagawa, S. J . Organomet. Chem. 1992, 428, 213.
(c) Bianchini, C.; Farnetti, E.; Glendenning, L.; Graziani, M.; Nardin,
G.; Peruzzini, M.; Rocchini, E.; Zanobini, F. Organometallics 1995, 14,
1489. (d) Inoue, S.; Nomura, K.; Hashiguchi, Sh.; Noyori, R.; Izawa,
Y. Chem. Lett. 1997, 957.
(9) (a) Hashiguchi, S.; Fujii, A.; Takehara, J .; Ikariya, T.; Noyori,
R. J . Am. Chem. Soc. 1995, 117, 7562. (b) Fujii, A.; Hashiguchi, S.;
Uematsu, N.; Ikariya, T.; Noyori, R. J . Am. Chem. Soc. 1996, 118, 2521.
(c) Haack, K. J .; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew.
Chem., Int. Ed. Engl. 1997, 36, 285. (d) Matsumura, K.; Hashiguchi,
S.; Ikariya, T.; Noyori, R. J . Am. Chem. Soc. 1997, 119, 8738. (e)
Murata, K.; Okano, K.; Miyagi, M.; Iwane, H.; Noyori, R.; Ikariya, T.
Org. Lett. 1999, 1, 1119.
(10) (a) Muller, D.; Umbricht, G.; Weber, B.; Pfaltz, A. Helv. Chim.
Acta 1991, 74, 232. (b) Genet, J .-P.; Ratovelomonana-Vidal, V.; Pinel,
C. Synlett 1993, 34, 478. (c) Krasik, P.; Alper, H. Tetrahedron 1994,
50, 4347. (d) Yang, H.; Alvarez, M.; Lugan, N.; Mathieu, R. J . Chem.
Soc., Chem. Commun. 1995, 1721. (e) Langer, T.; Helmchen, G.
Tetrahedron Lett. 1996, 37, 1381. (f) Langer, T.; J anssen, J .; Helmchen,
G. Tetrahedron: Asymmetry 1996, 7, 1599. (g) J iang, Q.; Van Plew,
D.; Mutuza, S.; Zhang, X. Tetrahedron Lett. 1996, 37, 797. (h) Gamez,
P.; Dunjic, B.; Lemaire, M. J . Org. Chem. 1996, 61, 5196. (i) J iang, Y.;
J iang, Q.; Zhu, G.; Zhang, X. Tetrahedron Lett. 1997, 38, 215. (j)
Sammakia, T.; Stangeland, E. L. J . Org. Chem. 1997, 62, 6104. (k)
Schwink, L.; Ireland, T.; Pu¨ntener, K.; Knochel, P. Tetrahedron:
Asymmetry 1998, 9, 1143. (l) J iang, Y.; J iang, Q.; Zhang, X. J . Am.
Chem. Soc. 1998, 120, 3817. (m) Nishibayashi, Y.; Takei, I.; Uemura,
S.; Hidai, M. Organometallics 1999, 18, 2291.
(11) (a) Takehara, J .; Hashiguchi, S.; Fujii, A.; Invoe, S.-I.; Ikariya,
T.; Noyori, R. J . Chem. Soc., Chem. Commun. 1996, 233. (b) Noyori,
R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97. (c) Palmer, M.;
Walsgrove, T.; Wills, M. J . Org. Chem. 1997, 62, 5226. (d) Kenny, J .
A.; Palmer, M. J .; Smith, A. R. C.; Walsgrove, T.; Wills, M. Synlett
1999, 10, 1615.
(1) (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; J ohn
Wiley: New York, 1994. (b) Catalytic Asymmetric Synthesis; Ojima,
I., Ed.; VCH: Berlin, 1993. (c) Corey, E. J .; Helal, C. J . Angew. Chem.,
Int. Ed. Engl. 1998, 37, 1986.
(2) (a) Corey, E: J .; Bakshi, R. K.; Shibata, S. J . Am. Chem. Soc.
1987, 109, 5551. (b) Corey, E: J .; Bakshi, R. K.; Shibata, S.; Chen, C.;
Singh, V. K. J . Am. Chem. Soc. 1987, 109, 7925. (c) Wallbaum, S.;
Martens, J . Tetrahedron Asymmetry 1992, 3, 1475. (d) Itsuno, S.;
Nakano, M.; Miyazaki, K.; Masuda, H.; Ito, K.; Hiraou, A.; Nakahama,
S. J . Chem. Soc., Perkin Trans. 1 1985, 2039.
(3) Noyori, R.; Takaya, H. Acta Chem. Scand. 1996, 50, 380.
(4) (a) Nishibayashi, Y.; Takei, S.; Uemura, S.; Hidai, M. Organo-
metallics 1999, 18, 2291. (b) J iang, Y.; J iang, Q.; Zhang, X. J . Am.
Chem. Soc. 1998, 120, 3817. (c) Bernard, M.; Guiral, V.; Delbecq, F.;
Fache, F.; Sautet, P.; Lemaire, M. J . Am. Chem. Soc. 1998, 120, 1441.
For reviews, see: (d) Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem.
Rev. 1992, 92, 1051. (e) Palmer, M. J .; Wills, M. Tetrahedron:
Asymmetry 1999, 10, 2045.
(5) (a) Sasson, Y.; Blum, J . Tetrahedron Lett. 1971, 24, 2167. (b)
Sasson, Y.; Blum, J . J . Org. Chem. 1975, 40, 1887. (c) Linn, D. E.;
Halpern, G. J . Am. Chem. Soc. 1987, 109, 2969. (d) Noyori, R.; Takaya,
H. Acc. Chem. Res. 1990, 23, 345. (e) Chowdhury, R. L.; Ba¨ckvall, J .
E. J . Chem. Soc., Chem. Commun. 1991, 1063.
(6) Evans, D. A.; Nelson, S. G.; Gagne´, M. R.; Muci, A. R. J . Am.
Chem. Soc. 1993, 115, 9800.
(7) (a) Gladiali, S.; Pinna, L.; Delogu, G.; De Martin, S.; Zassinovich,
G.; Mestroni, G. Tetrahedron: Asymmetry 1990, 1, 635. (b) Gamez, P.;
Fache, F.; Lemaire, M. Tetrahedron: Asymmetry 1995, 6, 705. (c)
Gamez, P.; Dunjic, B.; Lemaire, M. J . Am. Chem. Soc. 1998, 120, 1441.
(d) Murata, K.; Ikariya, T.; Noyori, R. J . Org. Chem. 1999, 65, 2186.
10.1021/jo991914a CCC: $19.00 © 2000 American Chemical Society
Published on Web 04/14/2000