Organic Letters
Letter
(3) (a) Ayers, S.; Zink, D. L.; Mohn, K.; Powell, J. S.; Brown, C. M.;
Murphy, T.; Grund, A.; Genilloud, O.; Salazar, O.; Thompson, D.;
Singh, S. B. J. Nat. Prod. 2007, 70, 1371−1373. (b) Ayers, S.; Zink, D.
L.; Powell, J. S.; Brown, C. M.; Grund, A.; Genilloud, O.; Salazar, O.;
Thompson, D.; Singh, S. B. J. Antibiot. 2008, 61, 59−62.
(4) (a) For the biosynthesis of the aglycons of fluvirucins B1, B2, and
B3, see: Puar, M. S.; Gullo, V.; Gunnarsson, I.; Hegde, V.; Patel, M.;
Schwartz, J. Bioorg. Med. Chem. Lett. 1992, 2, 575−578. (b) For the
identification and characterization of the fluvirucin B1 polyketide
synthase, see: Lin, T.-Y.; Borketey, L. S.; Prasad, G.; Waters, S. A.;
Schnarr, N. A. ACS Synth. Biol. 2013, 2, 635−642.
(18) Minor amounts (dr = 9:1) of the anti adduct were detected by
NMR. Purification of amine 15 afforded a single diastereoisomer.
(19) A similar remote macrocyclic stereocontrol in the synthesis of
fluvirucinins was first observed by Hoveyda5 in the hydrogenation of
related macrocyclic olefins bearing a trisubstituted C5−C6 (instead of
C6−C7) double bond.
(20) CCDC 1440667 contains the supplementary crystallographic
data for compound 18. This data can be obtained free of charge from
(21) For recent enantioselective total syntheses of complex alkaloids
using amino alcohol-derived lactams as starting materials, see:
(5) Fluvirucin B1: (a) Xu, Z.; Johannes, C. W.; Salman, S. S.;
Hoveyda, A. H. J. Am. Chem. Soc. 1996, 118, 10926−10927. (b) Xu,
Z.; Johannes, C. W.; Houri, A. F.; La, D. S.; Cogan, D. A.; Hofilena, G.
E.; Hoveyda, A. H. J. Am. Chem. Soc. 1997, 119, 10302−10316.
(6) Fluvirucinin A1: (a) Suh, Y.-G.; Kim, S.-A.; Jung, J.-K.; Shin, D.-
Y.; Min, K.-H.; Koo, B.-A.; Kim, H.-S. Angew. Chem., Int. Ed. 1999, 38,
3545−3547. (b) Liang, B.; Negishi, E. Org. Lett. 2008, 10, 193−195.
(c) Son, S.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 2756−2757
(formal). (d) Radha Krishna, P.; Anitha, K. Tetrahedron Lett. 2011, 52,
4546−4549. (e) Suh, Y.-G.; Lee, Y.-S.; Kim, S.-H.; Jung, J.-K.; Yun, H.;
Jang, J.; Kim, N.-J.; Jung, J.-W. Org. Biomol. Chem. 2012, 10, 561−568.
(7) Fluvirucinin A2: Lee, Y.-S.; Jung, J.-W.; Kim, S.-H.; Jung, J.-K.;
Paek, S.-M.; Kim, N.-J.; Chang, D.-J.; Lee, J.; Suh, Y. G. Org. Lett.
2010, 12, 2040−2043.
(a) Amat, M.; Ramos, C.; Per
Santos, M. M. M.; Bosch, J. Chem. Commun. 2013, 49, 1954−1956.
(b) Ballette, R.; Perez, M.; Proto, S.; Amat, M.; Bosch, J. Angew. Chem.,
́
ez, M.; Molins, E.; Florindo, P.;
́
Int. Ed. 2014, 53, 6202−6205. (c) Amat, M.; Guignard, G.; Llor, N.;
Bosch, J. J. Org. Chem. 2014, 79, 2792−2802. (d) Amat, M.; Pinto, A.;
Griera, R.; Bosch, J. Chem. - Eur. J. 2015, 21, 12804−12808. For
reviews, see: (e) Amat, M.; Per
143−160. (f) Amat, M.; Llor, N.; Griera, R.; Per
Prod. Commun. 2011, 6, 515−526.
́
ez, M.; Bosch, J. Synlett 2011, 2011,
́
ez, M.; Bosch, J. Nat.
(8) Fluvirucinin B0: Baltrusch, A. W.; Bracher, F. Synlett 2002, 1724−
1726.
(9) Fluvirucinin B1: (a) Houri, A. F.; Xu, Z.; Cogan, D. A.; Hoveyda,
A. H. J. Am. Chem. Soc. 1995, 117, 2943−2944. (b) Trost, B. M.;
Ceschi, M. A.; Konig, B. Angew. Chem., Int. Ed. Engl. 1997, 36, 1486−
̈
1489. (c) Martín, M.; Mas, G.; Urpí, F.; Vilarrasa, J. Angew. Chem., Int.
Ed. 1999, 38, 3086−3089. See also ref 5b.
(10) Fluvirucinin B2−5: Llac
2009, 11, 3198−3201.
(11) Guignard, G.; Llor, N.; Urbina, A.; Bosch, J.; Amat, M. Eur. J.
Org. Chem. 2016, 2016, 693−703.
̀
er, E.; Urpí, F.; Vilarrasa, J. Org. Lett.
(12) Gilbert, K. E.; Borden, W. T. J. Org. Chem. 1979, 44, 659−661.
(13) For the preparation of nitrones by oxidation of secondary
amines, see: (a) Murahashi, S.-I.; Mitsui, H.; Shiota, T.; Tsuda, T.;
Watanabe, S. J. Org. Chem. 1990, 55, 1736−1744. (b) Marcantoni, E.;
Petrini, M.; Polimanti, O. Tetrahedron Lett. 1995, 36, 3561−3562.
(c) Colonna, S.; Pironti, V.; Carrea, G.; Pasta, P.; Zambianchi, F.
Tetrahedron 2004, 60, 569−575. (d) Gella, C.; Ferrer, E.; Alibes
Busque, F.; de March, P.; Figueredo, M.; Font, J. J. Org. Chem. 2009,
74, 6365−6367.
́
, R.;
́
(14) For peracid-promoted oxidative ring-opening of cyclic nitrones,
see: Bapat, J. B.; Durie, A. Aust. J. Chem. 1984, 37, 211−219.
(15) (a) Iida, S.; Togo, J. Tetrahedron 2007, 63, 8274−8281. See
also: (b) Veisi, H. Synthesis 2010, 2631−2635. (c) Zhu, C.; Sun, C.;
Wei, Y. Synthesis 2010, 4235−4241.
(16) For copper-catalyzed couplings of alkenyl Grignard reagents
with primary alkyl iodides, see: (a) Derguini-Boumechal, F.;
Linstrumelle, G. Tetrahedron Lett. 1976, 17, 3225−3226. For more
recent examples, see: (b) Takahashi, M.; Dodo, K.; Hashimoto, Y.;
Shirai, R. Tetrahedron Lett. 2000, 41, 2111−2114. (c) Kochi, T.;
Ellman, J. A. J. Am. Chem. Soc. 2004, 126, 15652−15653.
(d) Terayama, N.; Yasui, E.; Mizukami, M.; Miyashita, M.; Nagumo,
S. Org. Lett. 2014, 16, 2794−2797. For the use of iron catalysts, see:
(e) Guerinot, A.; Reymond, S.; Cossy, J. Angew. Chem., Int. Ed. 2007,
́
46, 6521−6524. (f) Cahiez, G.; Duplais, C.; Moyeux, A. Org. Lett.
2007, 9, 3253−3254.
(17) (a) Kubota, K.; Leighton, J. L. Angew. Chem., Int. Ed. 2003, 42,
946−948. For synthetic applications, see: (b) Vintonyak, V. V.; Maier,
M. E. Org. Lett. 2008, 10, 1239−1242. (c) Harsh, P.; O’Doherty, G. A.
Tetrahedron 2009, 65, 5051−5055 and references cited therein. (d)
For the use of Sc(OTf)3 as a catalyst in enantioselective Leighton
allylations, see: Kim, H.; Ho, S.; Leighton, J. L. J. Am. Chem. Soc. 2011,
133, 6517−6520. See also ref 10.
D
Org. Lett. XXXX, XXX, XXX−XXX