1552 Inorganic Chemistry, Vol. 50, No. 4, 2011
Zdilla et al.
(M=N-NH2) species are proposed as key intermediates in
dinitrogen reduction at mononuclear centers,14 and appro-
priate species have exhibited the relevant stepwise reactivity.7
From a bioinorganic standpoint, we note studies of the
catalytic chemical reduction of parent hydrazine by Fe-S
and M-Fe-S (M = Mo, V) cubane species that strongly
resemble, in whole or in part, known biological clusters;12
under the reported conditions, only labile, heterometal-sub-
stituted clusters were active in hydrazine reduction, suggest-
ing the need for a reactive heterometal site in this chemistry.15
With the discovery of vanadium-dependent nitrogenase,1c
vanadium has also been investigated in the same context and
with similar chemistry, although these studies are much more
limited in number and scope.16
fixation appears to be required in at least one class of
nitrogenase that contains no transition elements other
than iron.1c The focus on iron intensified following the
macromolecular crystallographic studies that yielded the first
molecular visualization of the entire FeMo-cofactor;17 the
structural data inspired mechanistic conjectures that specifi-
cally enlisted iron centers as the site of substrate reduction
chemistry in the heterometallic cofactor cluster.18 The recent
detection of nitrogenase intermediates in site-directed Mo-
dependent nitrogenase mutants has also implicated iron in
substrate binding based on the positions of the introduced
protein side chain substitutions.19
In comparison with the molybdenum chemistry, examples
of iron-mediated hydrazine reduction are fewer in number
and generally postdate the first nitrogenase protein structure
determinations. The earliest report to our knowledge is an
account, without molecular details, of the catalytic electro-
chemical reduction of N2H4 by [Fe4S4(SR)4]2- cubane
clusters.13 More recently, the reduction of parent hydrazine
has been found in β-diketiminate20 and polyphosphine21
complexes of Fe(II) and, catalytically, in a dinuclear cyclo-
pentadienyl/thiolate system.22 Reductive cleavage of the N-N
bond in organohydrazines and ligated organohydrazides has
also been observed in the last system, as well as in a few other
mono- and dinuclear complexes with cyclopentadienyl23 and
β-diketiminate24 ancillary ligands. These examples of Fe-
mediated hydrazine reduction, while few in number, never-
theless encompass a range of coordination environments and
reaction conditions. Although detailed mechanistic studies
are few,24c,25 the body of evidence suggests a number of
fundamentally different hydrazine reduction pathways de-
pending on reaction system.
Recent attention on this subject has expanded to include
iron-mediated chemistry. Iron-based biological nitrogen
(7) Mo(IV)-hydrazide(2-) complexes from protonated Mo(0)-dinitrogen
precursors: (a) Baumann, J. A.; Bossard, G. E.; George, T. A.; Howell, D. B.;
Koczon, L. M.; Lester, R. K.; Noddings, C. M. Inorg. Chem. 1985, 24, 3568.
(b) Gebreyes, K.; Zubieta, J.; George, T. A.; Koczon, L. M.; Tisdale, R. C. Inorg.
Chem. 1986, 25, 405. (c) Kaul, B. B.; Hayes, R. K.; George, T. A. J. Am. Chem.
Soc. 1990, 112, 2002. (d) Galindo, A.; Hills, A.; Hughes, D. L.; Richards, R. L.;
Hughes, M.; Mason, J. J. Chem. Soc., Dalton Trans. 1990, 283. (e) George,
T. A.; Rose, D. J.; Chang, Y.; Chen, Q.; Zubieta, J. Inorg. Chem. 1995, 34, 1295.
(8) (a) Hitchcock, P. B.; Hughes, D. L.; Maguire, M. J.; Marjani, K.;
Richards, R. L. J. Chem. Soc., Dalton Trans. 1997, 4747. (b) Watanabe, D.;
Gondo, S.; Seino, H.; Mizobe, Y. Organometallics 2007, 26, 4909.
(9) (a) Schrock, R. R.; Glassman, T. E.; Vale, M. G. J. Am. Chem. Soc.
1991, 113, 725. (b) Vale, M. G.; Schrock, R. R. Inorg. Chem. 1993, 32, 2767. (c)
Carrillo, D. C. R. Acad. Sci. II C 2000, 3, 175. (d) Yandulov, D. V.; Schrock,
R. R. J. Am. Chem. Soc. 2002, 124, 6252. (e) Yandulov, D. V.; Schrock, R. R.;
Rheingold, A. L.; Ceccarelli, C.; Davis, W. M. Inorg. Chem. 2003, 42, 796. (f)
Yandulov, D. V.; Schrock, R. R. Inorg. Chem. 2005, 44, 1103. (g) Vrubel, H.;
Verzenhassi, V. H. C.; Nakagaki, S.; Nunes, F. S. Inorg. Chem. Commun. 2008,
11, 1040.
(10) (a) Block, E.; Ofori-Okai, G.; Kang, H.; Zubieta, J. J. Am. Chem.
Soc. 1992, 114, 758. (b) Schollhammer, P.; Petillon, F. Y.; PoderGuillou, S.;
Saillard, J. Y.; Talarmin, J.; Muir, K. W. Chem. Commun. 1996, 2633. (c)
Schollhammer, P.; Guenin, E.; Petillon, F. Y.; Talarmin, J.; Muir, K. W.; Yufit,
D. S. Organometallics 1998, 17, 1922. (d) Petillon, F. Y.; Schollhammer, P.;
Talarmin, J.; Muir, K. W. Inorg. Chem. 1999, 38, 1954. (e) Le Grand, N.; Muir,
K. W.; Petillon, F. Y.; Pickett, C. J.; Schollhammer, P.; Talarmin, J. Chem.;Eur.
J. 2002, 8, 3115. (f) Schollhammer, P.; Didier, B.; Le Grand, N.; Petillon, F. Y.;
Talarmin, J.; Muir, K. W.; Teat, S. J. Eur. J. Inorg. Chem. 2002, 658.
(11) (a) Masumori, T.; Seino, H.; Mizobe, Y.; Hidai, M. Inorg. Chem.
2000, 39, 5002. (b) Seino, H.; Masumori, T.; Hidai, M.; Mizobe, Y. Organome-
tallics 2003, 22, 3424. (c) Takei, I.; Dohki, K.; Kobayashi, K.; Suzuki, T.; Hidai,
M. Inorg. Chem. 2005, 44, 3768.
In our own studies, we have assembled Fe(III)-arylimide-
thiolate cubane clusters, Fe4(NAr0)4(SAr)4, by reductive
scission of the N-N bond in 1,2-diarylhydrazines.26 With
respect to potentially relevant biomimetic chemistry, this
reaction system attracts our interest because of features in
common with biological Fe-S centers: (1) the iron sites are
weak-field, tetrahedral, and possess a partial sulfur-anion
environment; (2) the reaction chemistry couples substrate
reduction to biologically observed Fe(II)/Fe(III) redox
states; and (3) the product cluster structure maps onto the
archetypal biological Fe-S cubane geometry. Following an
initial communication,26 we present here a detailed account
(12) (a) Coucouvanis, D.; Mosier, P. E.; Demadis, K. D.; Patton, S.;
Malinak, S. M.; Kim, C. G.; Tyson, M. A. J. Am. Chem. Soc. 1993, 115,
12193. (b) Demadis, K. D.; Coucouvanis, D. Inorg. Chem. 1994, 33, 4195. (c)
Demadis, K. D.; Coucouvanis, D. Inorg. Chem. 1995, 34, 3658. (d) Demadis,
K. D.; Malinak, S. M.; Coucouvanis, D. Inorg. Chem. 1996, 35, 4038. (e)
Coucouvanis, D.; Demadis, K. D.; Malinak, S. M.; Mosier, P. E.; Tyson, M. A.;
Laughlin, L. J. J. Mol. Catal. A: Chem. 1996, 107, 123.
(17) See: Einsle, O.; Tezcan, F. A.; Andrade, S.; Schmid, B.; Yoshida, M.;
Howard, J. B.; Rees, D. C. Science 2002, 297, 1696, and references therein.
(18) Peters, J. W.; Szilagyi, R. K. Curr. Opin. Chem. Biol. 2006, 10, 101.
(19) (a) Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C. Acc. Chem. Res.
2009, 42, 609. (b) Dos Santos, P. C.; Igarashi, R. Y.; Lee, H.-I.; Hoffman, B. M.;
Seefeldt, L. C.; Dean, D. R. Acc. Chem. Res. 2005, 38, 208.
(20) Yu, Y.; Brennessel, W. W.; Holland, P. L. Organometallics 2007, 26,
3217.
(21) (a) Crossland, J. L.; Zakharov, L. N.; Tyler, D. R. Inorg. Chem. 2007,
46, 10476. (b) Saouma, C. T.; M€uller, P.; Peters, J. C. J. Am. Chem. Soc. 2009,
131, 10358.
(22) Chen, Y.; Zhou, Y.; Chen, P.; Tao, Y.; Li, Y.; Qu, J. J. Am. Chem.
Soc. 2008, 130, 15250.
(13) Hozumi, Y.; Imasaka, Y.; Tanaka, K.; Tanaka, T. Chem. Lett. 1983,
897.
(14) (a) Pickett, C. J. J. Biol. Inorg. Chem. 1996, 1, 601. (b) Chatt, J.;
Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589. (c) Schrock, R. R. Pure
Appl. Chem. 1997, 69, 2197.
(15) Coucouvanis, D. J. Biol. Inorg. Chem. 1996, 1, 594.
(16) (a) Rehder, D.; Woitha, C.; Priebsch, W.; Gailus, H. J. Chem. Soc.,
Chem. Commun. 1992, 364. (b) Lefloch, C.; Henderson, R. A.; Hughes, D. L.;
Richards, R. L. J. Chem. Soc., Chem. Commun. 1993, 175. (c) Gailus, H.;
Woitha, C.; Rehder, D. J. Chem. Soc., Dalton Trans. 1994, 3471. (d) Malinak,
S. M.; Demadis, K. D.; Coucouvanis, D. J. Am. Chem. Soc. 1995, 117, 3126. (e)
Ferguson, R.; Solari, E.; Floriani, C.; Osella, D.; Ravera, M.; Re, N.; Chiesi-Villa,
A.; Rizzoli, C. J. Am. Chem. Soc. 1997, 119, 10104. (f) Davies, S. C.; Hughes,
D. L.; Janas, Z.; Jerzykiewicz, L. B.; Richards, R. L.; Sanders, J. R.; Silverston,
J. E.; Sobota, P. Inorg. Chem. 2000, 39, 3485. (g) Davies, S. C.; Hughes, D. L.;
Janas, Z.; Jerzykiewicz, L. B.; Richards, R. L.; Sanders, J. R.; Silverston, J. E.;
Sobota, P. Inorg. Chem. 2000, 39, 3485. (h) Chu, W.-C.; Wu, C.-C.; Hsu, H.-F.
Inorg. Chem. 2006, 45, 3164.
(23) Ohki, Y.; Takikawa, Y.; Hatanaka, T.; Tatsumi, K. Organometallics.
2006, 25, 3111.
(24) (a) Smith, J. M.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc.
2003, 125, 15752. (b) Vela, J.; Stoian, S.; Flaschenriem, C. J.; M€unck, E.; Holland,
P. L. J. Am. Chem. Soc. 2004, 126, 4522. (c) Sadique, A. R.; Gregory, E. A.;
Brennessel, W. W.; Holland, P. L. J. Am. Chem. Soc. 2007, 129, 8112.
(25) Yelle, R. B.; Crossland, J. L.; Szymczak, N. K.; Tyler, D. R. Inorg.
Chem. 2009, 48, 861.
(26) Verma, A. K.; Lee, S. C. J. Am. Chem. Soc. 1999, 121, 10838.