10.1002/anie.201904157
Angewandte Chemie International Edition
COMMUNICATION
Wong, FEBS J. 2001, 268, 3117-3125; d) Q. S. Li, J. Ogawa, R. D.
Schmid, S. Shimizu, Appl. Environ. Microbiol. 2001, 67, 5735-5739; e) W.
C. Huang, A. C. Westlake, J. D. Marechal, M. G. Joyce, P. C. Moody, G.
C. Roberts, J. Mol. Biol. 2007, 373, 633-651; f) R. J. Sowden, S. Yasmin,
N. H. Rees, S. G. Bell, L. L. Wong, Org. Biomol. Chem. 2005, 3, 57-64;
g) R. J. Branco, A. Seifert, M. Budde, V. B. Urlacher, M. J. Ramos, J.
Pleiss, Proteins 2008, 73, 597-607; h) A. M. Sawayama, M. M. Chen, P.
Kulanthaivel, M. S. Kuo, H. Hemmerle, F. H. Arnold, Chem. Eur. J. 2009,
15, 11723-11729; i) A. Seifert, J. Pleiss, Proteins 2009, 74, 1028-1035.
a) Q. S. Li, U. Schwaneberg, P. Fischer, R. D. Schmid, Chem. Eur. J.
2000, 6, 1531-1536; b) E. T. Farinas, U. Schwaneberg, A. Glieder, F. H.
Arnold, Adv. Synth. Catal. 2001, 343, 601-606; c) A. Glieder, E. T. Farinas,
F. H. Arnold, Nat. Biotechnol. 2002, 20, 1135-1139; d) M. W. Peters, P.
Meinhold, A. Glieder, F. H. Arnold, J. Am. Chem. Soc. 2003, 125, 13442-
13450; e) B. M. Lussenburg, L. C. Babel, N. P. Vermeulen, J. N.
Commandeur, Anal. Biochem. 2005, 341, 148-155; f) B. M. van Vugt-
Lussenburg, E. Stjernschantz, J. Lastdrager, C. Oostenbrink, N. P.
Vermeulen, J. N. Commandeur, J. Med. Chem. 2007, 50, 455-461; g) J.
C. Lewis, F. H. Arnold, Chimia 2009, 63, 309-312.
at F87, A328 and I263 were particularly effective, with mutations
at S72, A82, E267 and A330 also playing a role. Interestingly, the
variant library catalysed the benzylic (C4) oxidation of the N-Ac
and N-Boc derivatives of THQ to the alcohol and then the ketone,
and near-total selectivity for benzylic oxidation of methyl-
quinolines was observed. Therefore, the combinations of
mutations in this collection of variants demonstrated good control
over the regioselectivity of attack on the two rings as well as the
partitioning between reaction pathways after initial H-atom
abstraction. The exceptions were the absence of C3, C7,C8 and
benzylic methyl oxidation of THQs and the low yields of the 3-
phenols from the quinolines. Further enzyme engineering is
required to achieve oxidation at these positions. The
biotransformation of THQ was scalable. For example, the
oxidation of 1 by RP/H171L/I263G at 100 mL scale in shake flasks,
without active aeration, agitation or pH control, afforded 100%
conversion of >20 mM of 1 with a TON >10,000 by sequential
addition of 4 mM aliquots of substrate over 2 days (1.5 g/L/day),
with a total product yield of 160 mg (60%).
[8]
[9]
a) S. Kille, F. E. Zilly, J. P. Acevedo, M. T. Reetz, Nat. Chem. 2011, 3,
738-743; b) C. G. Acevedo-Rocha, C. G. Gamble, R. Lonsdale, A. T. Li,
N. Nett, S. Hoebenreich, J. B. Lingnau, C. Wirtz, C. Fares, H. Hinrichs, A.
Deege, A. J. Mulholland, Y. Nov, D. Leys, K. J. McLean, A. W. Munro, M.
T. Reetz, ACS Catal. 2018, 8, 3395-3410.
[10] a) K. Zhang, B. M. Shafer, M. D. Demars, 2nd, H. A. Stern, R. Fasan, J.
Am. Chem. Soc. 2012, 134, 18695-18704; b) A. Rentmeister, F. H. Arnold,
R. Fasan, Nat. Chem. Biol. 2009, 5, 26-28; c) K. Zhang, S. El Damaty, R.
Fasan, J. Am. Chem. Soc. 2011, 133, 3242-3245; d) J. N. Kolev, K. M.
O'Dwyer, C. T. Jordan, R. Fasan, ACS Chem. Biol. 2014, 9, 164-173.
[11] a) A. Seifert, S. Vomund, K. Grohmann, S. Kriening, V. B. Urlacher, S.
Laschat, J. Pleiss, Chembiochem 2009, 10, 853-861; b) E. Weber, A.
Seifert, M. Antonovici, C. Geinitz, J. Pleiss, V. B. Urlacher, Chem.
Commun. 2011, 47, 944-946.
[12] a) C. J. C. Whitehouse, S. G. Bell, H. G. Tufton, R. J. Kenny, L. C. Ogilvie,
L. L. Wong, Chem. Commun. 2008, 966-968; b) C. J. C. Whitehouse, S.
G. Bell, W. Yang, J. A. Yorke, C. F. Blanford, A. J. Strong, E. J. Morse, M.
Bartlam, Z. Rao, L. L. Wong, Chembiochem 2009, 10, 1654-1656; c) C.
J. C. Whitehouse, W. Yang, J. A. Yorke, B. C. Rowlatt, A. J. Strong, C. F.
Blanford, S. G. Bell, M. Bartlam, L. L. Wong, Z. Rao, Chembiochem 2010,
11, 2549-2556; d) C. J. C. Whitehouse, W. Yang, J. A. Yorke, H. G. Tufton,
L. C. Ogilvie, S. G. Bell, W. Zhou, M. Bartlam, Z. Rao, L. L. Wong, Dalton
Trans. 2011, 40, 10383-10396.
In summary, CYP102A1 shows multi-function oxidase
activity in the oxidation of quinolines, tetrahydroquinolines and
3,4-dihydro-2-quinolinone. Substituents on both rings of these
core motifs were well tolerated by the CYP102A1 variants, and
there were good indications of the residues and mutations to be
targeted for the selective oxy-functionalisation of these important
building block compounds at specific positions.
Experimental Section
Experimental details are shown in Supporting Information.
[13] a) X. Ren, J. A. Yorke, E. Taylor, T. Zhang, W. Zhou, L. L. Wong, Chem.
Eur. J. 2015, 21, 15039-15047; b) X. K. Ren, J. A. O'Hanlon, M. Morris, J.
Robertson, L. L. Wong, ACS Catal. 2016, 6, 6833-6837; c) J. A. O'Hanlon,
X. Ren, M. Morris, L. L. Wong, J. Robertson, Org. Biomol. Chem. 2017,
15, 8780-8787.
Acknowledgements
[14] C. J. C. Whitehouse, S. G. Bell, L. L. Wong, Chem. Eur. J. 2008, 14,
YL is supported by a Vice Chancellor’s Scholarship from Oxford
University.
10905-10908.
[15] N. Beyer, J. K. Kulig, M. W. Fraaije, M. A. Hayes, D. B. Janssen,
Chembiochem 2018, 19, 326-337.
Keywords: P450 • Protein engineering • C–H activation •
Nitrogen heterocyclic compounds • alkaloids
References
[1]
a) A. A. L. Gunatilaka, in The Alkaloids: Chemistry and Biology, Vol. 52
(Ed.: G. A. Cordell), Academic Press, 1999, pp. 1-101; b) A. M. Patten, D.
G. Vassão, M. P. Wolcott, L. B. Davin, N. G. Lewis, in Comprehensive
Natural Products II: Chemistry and Biology, Vol. 3 (Eds.: H.-W. Liu, L.
Mander), Elsevier, 2010, pp. 1173-1296.
[2]
a) A. R. Katritzky, S. Rachwal, B. Rachwal, Tetrahedron 1996, 52, 15031-
15070; b) V. Sridharan, P. A. Suryavanshi, J. C. Menendez, Chem. Rev.
2011, 111, 7157-7259.
[3]
[4]
[5]
Y. Miura, A. J. Fulco, J. Biol. Chem. 1974, 249, 1880-1888.
L. O. Narhi, A. J. Fulco, J. Biol. Chem. 1986, 261, 7160-7169.
a) S. Pflug, S. M. Richter, V. B. Urlacher, J. Biotechnol. 2007, 129, 481-
488; b) J. Brummund, M. Muller, T. Schmitges, I. Kaluzna, D. Mink, L.
Hilterhaus, A. Liese, J. Biotechnol. 2016, 233, 143-150; c) I. Kaluzna, T.
Schmitges, H. Straatman, D. van Tegelen, M. Muller, M. Schurmann, D.
Mink, Org. Process Res. Dev. 2016, 20, 814-819.
[6]
[7]
a) C. J. C. Whitehouse, S. G. Bell, L. L. Wong, Chem. Soc. Rev. 2012,
41, 1218-1260; b) S. T. Jung, R. Lauchli, F. H. Arnold, Curr. Opin.
Biotechnol. 2011, 22, 809-817; c) R. Fasan, ACS Catal. 2012, 2, 647-666;
d) C. A. Denard, H. Ren, H. Zhao, Curr. Opin. Chem. Biol. 2015, 25, 55-
64.
a) W. L. Alworth, Q. W. Xia, H. M. Liu, FASEB J. 1997, 11, 9SS, 190; b)
T. W. Ost, C. S. Miles, J. Murdoch, Y. Cheung, G. A. Reid, S. K. Chapman,
A. W. Munro, FEBS Lett. 2000, 486, 173-177; c) A. B. Carmichael, L. L.
This article is protected by copyright. All rights reserved.