4
Tetrahedron
Simꢀn-Fuentes, Chem. Rev. 2011, 111, 6984; e) Y. L. Janin, Chem.
Rev. 2012, 112, 3924; For recent pyrazole syntheses, see, e.g.: f) J.
J. Neumann, M. Suri, F. Glorius, Angew. Chem. Int. Ed. 2010, 49,
7790; g) G. Shan, P. Liu, Y. Rao, Org. Lett. 2011, 13, 1746; h) Y.
Wang, X. Bi, W.-Q. Li, D. Li, Q. Zhang, Q. Liu, B. S. Ondon, Org.
Lett. 2011, 13, 1722; i) J. Qian, Y. Liu, J. Zhu, B. Jiang, Z. Xu, Org.
Lett. 2011, 13, 4220; j) R. S. Foster, H. Jakobi, J. P. A. Harrity, Org.
Lett. 2012, 14, 4858; k) G. Zhang, H. Ni, W. Chen, J. Shao, H. Liu,
B. Chen, Y. Yu, Org. Lett. 2013, 15, 5967; l) X. Zhu, Y.-F. Wang,
W. Ren, F.-L. Zhang, S. Chiba, Org. Lett. 2013, 15, 3214; m) G.
Zhang, Y. Zhao, H. Ge, Angew. Chem., Int. Ed. 2013, 52, 2559; n)
Y. Kong, M. Tang, Y. Wang, Org. Lett. 2014, 16, 576; o) Y.
Schneider, J. Prévost, M. Gobin, C. Y. Legault, Org. Lett. 2014, 16,
596; p) F.-G. Zhang, Y. Wei, Y.-P. Yi, J. Nie, J.-A. Ma, Org. Lett.
2014, 16, 3122; q) J. Zhang, Y. Shao, H. Wang, Q. Luo, J. Chen, D.
Xu, X. Wan, Org. Lett. 2014, 16, 3312; r) X. Li, L. He, H. Chen,
W. Wu, H. Jiang, J. Org. Chem. 2013, 78, 3636; s) T. Zhang, W.
Bao, J. Org. Chem. 2013, 78, 1317; t) J.-R. Chen, W.-R. Dong, M.
Candy, F.-F. Pan, M. Jorres, C. Bolm, J. Am. Chem. Soc. 2012, 134,
6924; u) C. Zhu, B. Bi, D. Yao, Q.Y. Chen, Z. B. Luo, Synthesis.
2015, 47, 1877.
For selected reviews on photoredox catalysis: a) J. Xuan, W. J.
Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828; b) C. K. Prier, D. A.
Rankic, D. W. MacMillan, Chem. Rev. 2013, 113, 5322; c) D. M.
Schultz, T. P. Yoon, Science. 2014, 343, 1239176; d) R. A. Angnes,
Z. Li, C. R. D. Correia, G. B. Hammond, Org. Biomol. Chem. 2015,
13, 9152; e) J. Xuan, Z. G. Zhang, W.J. Xiao, Angew. Chem. Int.
Ed. 2015, 54, 15632; f) J. Luo, J. Zhang, ACS Catal. 2016, 6, 873;
g) J. R. Chen, X. Q. Hu, L. Q. Lu, W. J. Xiao, Chem. Soc. Rev. 2016,
45, 2044; h) See a special Issue on “Photoredox Catalysis in
Organic Chemistry” on Acc. Chem. Res., 2016, 49; i) X. Sun and S.
Yu, Synlett 2016, 27, 2659; j) M. Zhang, C. Zhu, L.-W. Ye,
Synthesis 2017, 49, 1150; k) J.-R. Chen, D.-M. Yan, Q. Wei, W.-J.
Xiao, ChemPhotoChem, 2017, 1, 148. l)W. Li, W. Xu, J. Xie, S.
Yu, C. Zhu, Chem. Soc. Rev., 2018, 47, 654.
UV-Vis absorption of phenyl acetylene, CuI and the mixture of
the two (see section 6 of Supporting Information), it is found that
the absorption of the mixture is red shifted to the region almost
within the spectrum of household blue LEDs compared to phenyl
acetylene or CuI alone. This result indicates that the generated
copper complex (intermediate 5 and 6) could be irradiated by blue
light, hence be oxidized through photochemical process. The
second step is initiated by the irradiation of RuII photocatalyst to
its excited state RuII* which is then reductively quenched by 2a
with concomitant generation of radical ion 9 and RuI. Upon
deprotonation, radical ion 9 is converted to radical 10 which
attacks diyne 4 to form radical intermediate 11. Through an
intramolecular hydrogen-atom-abstraction (HAT) and enamine-
to-imine tautomerization, 11 is converted to 13 via 12 by
abstracting a proton. Then intramolecular attack of allene group by
the nitrogen radical within intermediate 13 generates radical 14.
Finally, an oxidative quench of RuI by radical 14 regenerates RuII
photocatalyst, along with the formation of 15 which readily
transforms to desired product 3aa upon proton transfer.
6.
In conclusion, we have developed a visible-light promoted
cascade of Glaser coupling/annulation for the synthesis of
polysubstituted pyrazoles from readily available alkynes and
hydrazines. The method employs very mild reaction conditions
and uses air as the terminal oxidant, which makes the process
environmentally benign. Various substituted phenyl acetylene and
hyrazines undergo this reaction smoothly, leading to desired
products with good functional group tolerance and efficiency.
Photocatalysis was proven to be essential for these transformation
and a plausible mechanism featuring intramolecular hydrogen-
atom-abstraction (HAT) and enamine-to-imine tautomerization
was proposed for this transformation.
7.
8.
For reviews: a) J.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Acc.
Chem. Res. 2016, 49, 1911; b) P. Xu, W. Li, J. Xie, C. Zhu, Acc.
Chem. Res., 2018, 51, 484.
a) X.-Q. Hu, J.-R. Chen, Q. Wei, F.-L. Liu, Q.-H. Deng, A. M.
Beauchemin and Xiao, W.-J. Angew. Chem. Int. Ed. 2014, 53,
12163; b) Q.-Q. Zhao, X.-Q. Hu, M.-N. Yang, J.-R. Chen, W.-J.
Xiao, Chem. Commun. 2016, 52, 12749; c) Q.-Q. Zhao, J. Chen, D.-
M. Yan, J.-R. Chen, W.-J. Xiao, Org. Lett. 2017, 19, 3620.
Q. Wei, J.-R. Chen, X.-Q. Hu, X.-C. Yang, B. Lu, W.-J. Xiao, Org.
Lett. 2015, 17, 4464.
Acknowledgments
We acknowledge the National Natural Science Foundation of
China (No. 31501686), the Natural Science Foundation of Jiangsu
Province (No. BK20140536), the Qing Lan Project of Jiangsu
Province and Jiangsu University Foundation (No. 13JDG059) for
financial support.
9.
10. J. Cheng, P. Xu, W. Li, Y. Cheng, C. Zhu, Chem. Commun. 2016,
52, 11901.
11. J. Cheng, W. Li, Y. Duan, Y. Cheng, S. Yu, C. Zhu, Org. Lett. 2017,
19, 214.
References and notes
12. a) Y. Ding, T. Zhang, Q.-Y. Chen, C. Zhu, Org. Lett. 2016, 18,
4206; b) T. Zhang, Y. Meng, J. Lu, Y. Yang, G.-Q. Li, C. Zhu, Adv.
Synth. Catal., 2018, 360, 3063.
13. a) Y. Ding, W. Zhang, H. Li, Y. Meng, T. Zhang, Q.-Y. Chen, C.
Zhu, Green Chem., 2017, 19, 2941; b) Y. Ding, H. Li, Y. Meng, T.
Zhang, J. Li, Q.-Y. Chen, C. Zhu. Org. Chem. Front., 2017, 4, 1611.
1.
a) A. Schmidt, Z. Guan, Synthesis 2012, 44, 3251; b) S. Schnatterer,
Phenylpyrazole-Containing Fiprole Insecticides. In Bioactive
Heterocyclic Compound Classes: Agrochemicals; Lamberth, C.,
Ed.; Wiley-VCH: Weinheim, Germany, 2012; c) F. Giornala, S.
Pazenok, L. Rodefeld, N. Lui, J.-P. Vors, F. R. Leroux, J. Fluorine
Chem. 2013, 152, 2; d) V. Kumar, K. Kaur, G. K. Gupta, A. K.
Sharma, Eur. J. Med. Chem. 2013, 69, 735; e) K. M. Kasiotis, E. N.
Tzanetou, S. A. Haroutounian, Front. Chem. 2014, 2, 78; f) R.
Pérez-Fernández, P.Goya, J. Elguero, ARKIVOC 2014, 15, 233; g)
C. Li, L. Liang, K. Wang, C. Bian, J. Zhang, Z. Zhou, J. Mater.
Chem. A 2014, 2, 18097; h) S. H. Hwang, K. M. Wagner, C.
Morisseau, J. Y. Liu, H. Dong, A. T. Wecksler, B. D. Hammock, J.
Med. Chem. 2011, 54, 3037; i) H. X. Dai, A. F. Stepan, M. S.
Plummer, Y. H. Zhang, J. Q. Yu, J. Am. Chem. Soc. 2011, 133,
7222; j) S. R. Donohue, C. Halldin, V. W. Pike, Bioorg. Med. Chem.
2006, 14, 3712.
Supplementary Material
Highlights
• Simple one-pot reaction for preparation of
pyrazoles from alkynes and hydrazines.
• Mild conditions: visible-light promoted; room
temperature; O2 as the Oxidant.
• Easy reaction set-up.
2.
3.
A. Schmidt, A. Dreger, Curr. Org. Chem. 2011, 15, 2897.
a) R. A. Singer, M. Dore, J. E. Sieser, M. A. Berliner, Tetrahedron
Lett. 2006, 47, 3727; b) R. Kowalcyk, J. Skarzewski, Tetrahedron.
2005, 61, 623; c) S. O. Ojwach, J. Darkwa, Inorg. Chim. Acta. 2011,
363, 1947.
4.
5.
a) V. S. Thirunavukkarasu, K. Raghuvanshi, L. Ackermann, Org.
Lett. 2013, 15, 3286; b) P. M. Liu, C. G. Frost, Org. Lett. 2013, 15,
5862.
For reviews: a) K. Makino, H. S. Kim, Y. Kurasawa, J. Heterocycl.
Chem. 1998, 35, 489; b) J. Steve, ARKIVOC 2006, 7, 35; c) S.
Fustero, A. Simꢀn-Fuentes, J. F. Sanz-Cervera, Org. Prep. Proced.
Int. 2009, 41, 253; d) S. Fustero, M. Sꢁnchez-Rosellꢀ, P. Barrio, A.