** Crystal data for 4: C
H
B Cl N , M \ 423.41, monoclinic,
formed here indicates that 3c is a synthetic equivalent of the
type A structure.
20 27 2
3 2
space group P2 /c (no. 14), a \ 20.496(9), b \ 9.775(4), c \ 23.894(13)
1
Ó, b \ 114.37(6)¡, U \ 4360(3) Ó3, Z \ 8, j \ 0.71073 Ó, k \ 0.428
mm~1, D \ 1.290 Mg m~3, F(000) \ 1776, T \ 173(2) K, 7670
calc
Acknowledgements
NCN and AGO thank the EPSRC for research support and
Johnson Matthey Ltd. are thanked for generous supplies of
platinum salts.
unique data, R1 \ 0.0563.
suppdata/nj/1999/1053/ for crystallographic Ðles in .cif format.
¤¤ NMR data for 5a (CD Cl ): 11B-M1HN d 30.2; 1H d 7.13 (d, 4H,
2
2
C H , J \ 7.8 Hz), 7.02 (d, 4H, C H , J \ 7.8 Hz), 4.19 (q, 4H,
6
4
HH
6
4
HH
CH CH ), 2.29 (s, 6H, C H Me), 1.31 (t, 6H, CH CH ). 5b (CD OD):
2
3
6
4
2
3
3
11B-M1HN d 24.5; 1H (including data for the [NH Me ]` cation, see
Notes and references
2
2
text) d 6.91 (s, 8H, C H ), 4.88 (s, 6H, OH), 2.69 (s, 12H, NH Me ),
6
4
2
2
2.24 (s, 6H, C H Me); 13C-M1HN d 139.2 (ipso-C), 136.9 (p-C), 130.2 (o-
¤ In a typical reaction, a solution of 1 (0.502 g, 2.78 mmol) in toluene
(5 cm3) containing [Pt(PPh ) (g-C H )]4e (0.035 g, 5 mol%) was
6
4
C), 129.7 (m-C), 21.3 (C H Me).
6
4
3 2
2 4
”” Evidence for oxaborole species was also seen in the mass spectra of
3b-d. Thus, in the case of 3d, HRMS data were obtained for the
species Cw(4-MeOC H )2C(4-MeOC H )B(NMe )OBz (NMe) ). Calcd
transferred to a YoungÏs tap tube containing 2c (0.478 g, 2.32 mmol),
which was then sealed and heated to 95 ¡C overnight. The toluene was
removed in vacuo and addition of Et O (5 cm3) resulted in the forma-
6 4 6 4 2
H B N O 364.213959, found 364.212954.
2
2
C
tion of a precipitate 3c (0.680 g, 76%) that was isolated by Ðltration
20 26 2
2 3
°° NMR data for 7 (CDCl ): 11B-M1HN d 38.6; 1H d 7.02 (d, 4H,
and washed with hexane (3 ] 5 cm3). Slow di†usion of hexane into
the initial Ðltrate resulted in the formation of a crop of red crystals of
3c, one of which was used for X-ray crystallography. NMR data for 3c
(C D ): 11B-M1HN d 34.4 (BÈNMe ), 9.1 (BCl ); 1H d 7.51 (d, 2H,
3
C H , J \ 8.6 Hz), 6.68 (d, 4H, C H , J \ 8.6 Hz), 4.28 (br s,
6
4
HH
6
4
HH
4H, C H ), 4.19 (br s, 4H, C H ), 3.74 (s, 6H, NMe ), 2.98 (s, 6H,
5
5
5
5
2
NMe ), 2.86 (s, 6H, C H Me).
2
6 4
7
8
2
2
C H , J \ 8.0 Hz), 6.89 (m, 4H, C H ), 6.87 (d, 2H, C H , J
\
6
4
HH
6
4
6
4
HH
8.0 Hz), 2.51 (s, 6H, B NMe ), 2.11 (s, 3H, BNMe ), 2.08 (s, 3H,
1 G. J. Irvine, M. J. G. Lesley, T. B. Marder, N. C. Norman, E. G.
Robins, W. Roper, C. R. Rice, G. R. Whittell and G. J. Wright,
Chem. Rev., 1998, 98, 2685; T. B. Marder and N. C. Norman,
T opics in Catalysis, ed. W. Leitner and D. G. Blackmond, Baltzer
Science Publishers, Amsterdam, 1998, vol. 5, p. 63.
2
2
2
BNMe ), 2.03 (s, 3H, C H Me), 2.02 (s, 3H, C H Me); 13C-M1HN d
2
6
4
6 4
138.9, 137.3 (ipso-C), 136.2, 135.5 (p-C), 129.6, 129.4 (o-C), 129.2, 128.5
(m-C), 44.4 (B NMe ), 42.2, 38.9 (BNMe ), 21.2, 21.1 (C H Me). 11B,
2
2
2
6 4
1H and 13C spectra were referenced to BF É Et O, Me Si and Me Si,
3 2 4 4
respectively. HRMS (EI) for C
H B Cl N : Calcd 384.173 181,
2 F. J. Lawlor, N. C. Norman, N. L. Pickett, E. G. Robins, P.
Nguyen, G. Lesley, T. B. Marder, J. A. Ashmore and J. C. Green,
Inorg.Chem., 1998, 37, 5282.
20 26 2
2 2
found 384.171 333. Compounds 3a, 3b and 3d were prepared similarly.
Selected data for 3a: 11B-M1HN NMR (C D ) d 33.8 (BÈNMe ), 9.5
7
8
2
(BCl ); 3b: 11B-M1HN NMR (C D ) d 34.2 (BÈNMe ), 9.0 (BCl ),
3 H. Noth, Z. Naturforsch., T eil B, 1984, 39, 1463.
2
7
8
2 2
Calcd 356.141 880, found
HRMS (EI) for
C
H
B Cl N
:
4 (a) T. Ishiyama, N. Matsuda, N. Miyaura and A. Suzuki, J. Am.
Chem. Soc., 1993, 115, 11018; (b) F. Ozaura, A. Suzuki and N.
Miyaura, Organometallics, 1996, 15, 713; (c) C. N. Iverson and M.
R. Smith, J. Am. Chem. Soc., 1995, 117, 4403; (d) C. N. Iverson and
M. R. Smith, Organometallics, 1996, 15, 5155; (e) M. J. G. Lesley,
P. Nguyen, N. J. Taylor, T. B. Marder, A. J. Scott, W. Clegg and
N. C. Norman, Organometallics, 1996, 15, 5137.
18 22 2
2
2
356.140 419; 3d: 11B-M1HN NMR (C D ) d 34.7 (BÈNMe ), 8.7 (BCl ),
7 8 2 2
HRMS (EI) for
C H B Cl N O : Calcd 416.163 010, found
20 26 2
2 2 2
416.162 476. The 11B resonances for the BÈNMe borons for all 3 are
2
signiÐcantly broader than those for the BCl borons consistent with
2
their respective coordination geometries. Satisfactory 1H and 13C
NMR data were also obtained for 3a, 3b and 3d. All alkynes were
either procured commercially or prepared by literature methods.
5 H. Noth and W. Meister, Z. Naturforsch., T eil B, 1962, 17, 714.
6 D. Curtis, M. J. G. Lesley, N. C. Norman, A. G. Orpen and J.
Starbuck, J. Chem. Soc., Dalton T rans., 1999, 1687.
7 H. Braunschweig, Angew. Chem., Int. Ed., 1998, 37, 1787.
8 H. Klusik, C. Pues and A. Berndt, Z. Naturforsch., T eil B, 1984,
39, 1042.
9 W. Siebert, M. Hildenbrand, P. Hornbach, G. Karger and H.
Pritzkow, Z. Naturforsch., T eil B, 1989, 44, 1179.
10 M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G.
Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson,
J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G.
Zakrzeqski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefa-
nov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala,
W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts,
R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P.
Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian
94, revision D.4, Gaussian Inc., Pittsburgh, PA, 1995.
11 P. Frankhauser, H. Pritzkow and W. Siebert, Z. Naturforsch., T eil
B, 1994, 49, 250.
12 N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457.
13 M. J. G. Lesley, U. Mock, N. C. Norman, A. G. Orpen, C. R. Rice
and J. Starbuck, J. Organomet. Chem., 1999, 582, 116.
14 M. Herberhold, U. DorÑer and B. Wrackmeyer, J. Organomet.
Chem., 1997, 530, 117.
15 H. Braunschweig, R. Dirk, M. Muller, P. Nguyen, R. Resendes, D.
P. Gates and I. Manners, Angew. Chem., Int. Ed. Engl., 1997, 36,
2338.
” Crystal data for 3a: C
H B Cl N , M \ 296.83, monoclinic,
13 20 2
2 2
space group P2 /c (no. 14), a \ 16.121(3), b \ 7.1894(6),
1
c \ 13.5772(17) Ó, b \ 95.567(15)¡, U \ 1566.2(4) Ó3, Z \ 4,
j \ 0.71073 Ó, k \ 0.40 mm~1, T \ 173(2) K. Crystal data for 3c:
C
H B Cl N , M \ 386.95, monoclinic, space group P2/c (no. 13),
20 26 2
2 2
a \ 12.410(2), b \ 12.8779(14), c \ 13.0655(16) Ó, b \ 90.428(14)¡,
U \ 2088.0(5) Ó3, Z \ 4, j \ 0.71073 Ó, k \ 0.317 mm~1, D
calc
1.231 Mg m~3, F(000) \ 816, T \ 173(2) K, 4779 unique data,
\
R1 \ 0.0372. Crystal data for 3d: C
H B Cl N O , M \ 418.95,
20 26 2
2 2 2
monoclinic, space group P2 /c (no. 14), a \ 10.870(3), b \ 12.404(2),
1
c \ 16.086(3) Ó, b \ 92.185(9)¡, U \ 2167.3(7) Ó3, Z \ 4, j \ 0.71073
Ó, k \ 0.32 mm~1, T \ 173(2) K.
° Gas phase energies of 3b and its type A isomer were evaluated by
full geometry optimisation at the SCF 6-31G level, followed by single
point energy calculations with 6-31G** basis sets. At this level the
acyclic A isomer is 6.9 kcal mol~1 more stable. We note however, that
these calculations do not model any intermolecular interactions that
might inÑuence the preferred geometry in condensed phases.
Ò 11B NMR data (C D ) for 3e: 11B-M1HN d 37.9 (BÈNMe ), 11.1
7
8
2
(BCl ); 3f: 36.2 (BÈNMe ), 9.1 (BCl ). Satisfactory 1H NMR data
2
2
2
were also obtained.
p NMR data for 4 (CD Cl ): 11B-M1HN d 8.7 (sh), 7.3 (sh); 1H d 7.03
2
2
(d, 2H, C H , J \ 8.1 Hz), 6.96 (d, 2H, C H , J \ 8.1 Hz), 6.92
HH HH
(s, 4H, C H ), 6.59 (br s, 1H, NHMe ), 2.84 (s, 3H, NMe ), 2.74 (d, 3H,
6
4
6 4
6
4
2
2
NHMe , 3J \ 5.5 Hz), 2.72 (s, 3H, NMe ), 2.37 (d, 3H, NHMe ,
HH
2
2
2
3J \ 5.5 Hz), 2.25 (s, 3H, C H Me), 2.24 (s, 3H, C H Me); 13C-
HH
6
4
6 4
M1HN d 157.8, 147.5 (BC2CB), 139.3, 138.4 (ipso-C), 135.5 (p-C), 130.3,
128.9 (o-C), 128.6, 128.5 (m-C), 49.4, 42.8, 40.1, 40.3 (NMe and
2
NHMe ), 21.4, 21.3 (C H Me).
L etter 9/07255A
2
6 4
New J. Chem., 1999, 23, 1053È1055
1055