T. Honda et al. / Bioorg. Med. Chem. Lett. 16 (2006) 6306–6309
6309
References and notes
1. Cole, B. J.; Bentley, M. D. Holzforshung 1991, 45, 265.
2. Maurya, S. K.; Devi, S.; Pandey, V. B. Fitoterapia 1989, 5,
468.
DMSO
BA
10
CDDO
HO-1
Figure 2. Analogue 10 induces heme oxygenase-1 (HO-1) in vivo in
liver. Male CD-1 mice (three mice per group) were gavaged with
triterpenoids (2 lM) in DMSO. After 6 h, livers were collected and
analyzed by Western blot for heme oxygenase-1.20
3. Pisha, E.; Chai, H.; Lee, I. S.; Chagwedera, T. E.;
Farnsworth, N. R.; Cordell, G. A.; Beecher, C. W.; Fong,
H. H.; Kinghorn, A. D.; Brown, D. M.; Wani, M. C.;
Wall, M. E.; Heiken, T. J.; Das Gupta, T. K.; Pezzuto, J.
M. Nat. Med. 1995, 1, 1046.
4. Schmidt, M. L.; Kuzmanoff, K. L.; Ling-Indeck, L.;
Pezzuto, J. M. Eur. J. Cancer 1997, 33, 2007.
5. Zuco, V.; Supino, R.; Righetti, S. C.; Cleris, L.; Marchesi,
E.; Gambacorti-Passerini, C.; Formelli, F. Cancer Lett.
2002, 175, 17.
6. Ehrhardt, H.; Fulda, S.; Fuhrer, M.; Debatin, K. M.;
Jeremias, I. Leukemia 2004, 18, 1406.
7. Honda, T.; Gribble, G. W.; Suh, N.; Finlay, H. J.;
Rounds, B. V.; Bore, L.; Favaloro, F. G., Jr.; Wang, Y.;
Sporn, M. B. J. Med. Chem 2000, 43, 1866.
8. Honda, T.; Rounds, B. V.; Bore, L.; Finlay, H. J.;
Favaloro, F. G., Jr.; Suh, N.; Wang, Y.; Sporn, M. B.;
Gribble, G. W. J. Med. Chem 2000, 43, 4233.
9. Honda, T.; Honda, Y.; Favaloro, F. G., Jr.; Gribble, G.
W.; Suh, N.; Place, A. E.; Rendi, M. H.; Sporn, M. B.
Bioorg. Med. Chem. Lett. 2002, 12, 1027.
10. Shortly after we started this project, a Korean group
reported methyl ester 3; You, Y.-J.; Kim, Y.; Nam, N.-H.;
Ahn, B.-Z. Bioorg. Med. Chem. Lett. 2003, 13, 3137. This
compound was synthesized from betulinic acid (1) by the
same method as they reported.
enzyme, heme oxygenase-1 in the liver (in vivo). In the
RAW cell assay (Table 1), compounds 3–12 with a cya-
no enone functionality in ring A are highly active, with a
potency which is similar to that of CDDO, whereas bet-
ulinic acid is inactive. The series of compounds 13–18
with a carboxyl or methoxycarbonyl enone functionality
in ring A is less active, with a potency more than 10-fold
less than that of CDDO. Most importantly, we have
found that one of the new analogues, 10, is significantly
more potent in vivo than both betulinic acid and the
oleanolic acid analogue, CDDO. Thus, as shown in
Figure 2, oral dosing of 2 lM of compound 10 caused
significant induction of the anti-inflammatory, cytopro-
tective enzyme, heme oxygenase-1, in the liver, while
betulinic acid and CDDO were both markedly less
potent at this low dose. There is major interest in
stimulating heme oxygenase-1 as a protective enzyme
in many chronic disease conditions in which inflamma-
tion and oxidative stress play a key role.12
11. All new compounds 4–18 provided acceptable HRMS
data ( 5 ppm) and 1H NMR spectra that exhibit no
discernible impurities. Compound 10: amorphous solid.
In summary, in a series of new betulinic acid ana-
logues, we have found the following interesting SARs:
(1) A cyano enone functionality in ring A is necessary
for exhibiting potent inhibitory activity against NO
production in RAW cells. (2) Noteworthy is that an
enone functionality in ring C is not necessary for
the potency. The SARs are entirely different from
those of oleanolic acid analogues.7,8 (3) The methoxy-
carbonyl and carboxyl enone functionalities in ring A
are not important for the potency. (4) C-17 modifica-
tions do not affect the potency in the RAW cell assay.
These results are also different from those of CDDO
analogues.9 However, interestingly, only the acyl imid-
azole increases the potency in vivo. (5) Isopropenyl
side chains do not affect the potency. Overall, it is
important to note that our present results are different
from those of the oleanolic acid analogues that we
have studied previously. Further syntheses and biolog-
ical evaluation of new betulinic acid analogues are in
progress.
25
½aꢁD +0.7° (c 0.57, CHCl3). CD (c 0.0016, EtOH) De265
1
+1.71 and De346 ꢀ2.32. H NMR (CDCl3) d 8.30 (1H, br
s), 7.82 (1H, s), 7.55 (1H, br s), 7.07 (1H, br s), 4.79 (1H, d,
J = 1.46 Hz), 4.68 (1H, t, J = 1.46 Hz), 2.98 (1H, ddd,
J = 4.76, 10.98, 10.98 Hz), 2.77 (1H, ddd, J = 3.66, 12.27,
12.27 Hz), 2.48 (1H, ddd, J = 3.29, 3.29, 13.91 Hz), 2.34
(1H, q, J = 6.59 Hz), 1.72, 1.18, 1.13, 1.12, 1.021, 1.016
(each 3H, s); 13C NMR (CDCl3) d 198.4, 173.1, 170.8,
149.5, 137.5, 130.0, 117.6, 115.2, 114.2, 110.7, 57.7, 52.8,
51.4, 45.3, 45.2, 44.2, 42.7, 42.1, 41.0, 37.2, 34.2, 33.6, 33.2,
30.7, 29.8, 27.9, 25.4, 21.6, 19.6, 19.0, 18.6, 16.7, 14.7. MS
(ESI+) m/z 528 [M+H]+; HRMS (ESI+) calcd for
C35H45N3O2 + H 528.3590, found 528.3580.
12. Ryter, S. W.; Alam, J.; Choi, A. M. Physiol. Rev. 2006, 86,
583.
13. Node, M.; Nishide, K.; Sai, M.; Fuji, K.; Fujita, E. J. Org.
Chem 1981, 46, 1991.
14. Ono, N.; Yamada, T.; Saito, T.; Tanaka, K.; Kaji, A. Bull.
Chem. Soc. Jpn 1978, 51, 2401.
15. Finkbeiner, H. L.; Stiles, M. J. Am. Chem. Soc 1963, 85,
616.
16. Liotta, D.; Barnum, C.; Puleo, R.; Zima, G.; Bayer, C.;
Kezar, H. S., III J. Org. Chem. 1981, 46, 2920.
17. Hori, T.; Sharpless, K. B. J. Org. Chem. 1979, 44, 4208.
18. Clive, D. L. J. Tetrahedron 1978, 34, 1049.
19. Rozen, S.; Faust, Y.; Ben-Yakov, H. Tetrahedron Lett.
1979, 1823.
20. Liby, K.; Hock, T.; Yore, M. M.; Suh, N.; Place, A. E.;
Risingsong, R.; Williams, C. R.; Royce, D. B.; Honda, T.;
Honda, Y.; Gribble, G. W.; Hill-Kapturczak, N.; Agar-
wal, A.; Sporn, M. B. Cancer Res 2005, 65, 4789.
Acknowledgments
This investigation was supported by funds from NIH
Grant 1 R01 CA78814, the Norris Cotton Cancer Cen-
ter, the Dartmouth College Class of 1934, and the
National Foundation for Cancer Research. M.B.S. is
Oscar M. Cohn Professor.