RSC Advances
Paper
and DMAEMA. DLS study indicates the self-assembly of these
copolymers with increase of temperature at a particular pH due
to LCST type phase separation and it persists even in the pres-
ence of the uorescent ANS molecule which enters into the
8 Y. Jiang, Y. Wang, N. Ma, Z. Wang, M. Smet and X. Zhang,
Langmuir, 2007, 23, 4029–4034.
9 J. Jiang, X. Tong, D. Morris and Y. Zhao, Macromolecules,
2006, 39, 4633–4640.
aggregate core of pDEGMA chains. Keeping the temperature 10 J. Jiang, X. Tong and Y. Zhao, J. Am. Chem. Soc., 2005, 127,
xed if pH is lowered by a small amount the dissociation of the 8290–8291.
aggregate takes place because of protonation of the basic –NMe2 11 X. Jiang, C. A. Lavender, J. W. Woodcock and B. Zhao,
groups. This is also supported from the uorescence spectros- Macromolecules, 2008, 41, 2632–2643.
copy where the uorescence intensity of ANS increases due to 12 H. Lee, W. Wu, J. K. Oh, L. Mueller, G. Sherwood, L. Peteanu,
inclusion in the hydrophobic pDEGMA core and its disaggre-
gation with lowering of pH releases the uorophores decreasing
T. Kowalewski and K. Matyjaszewski, Angew. Chem., Int. Ed.,
2007, 46, 2453–2457.
the PL-intensity. The aggregation and dissociation is highly 13 Y. Katayama, T. Sonoda and M. Maeda, Macromolecules,
reversible with respect to the change of temperature and pH. 2001, 34, 8569–8573.
The polymers also exhibit reversible multiple aggregation by 14 J. Joseph, C. A. Dreiss and T. Cosgrove, Langmuir, 2007, 23,
triggering temperature and pH. All the co-polymers require 460–466.
increased temperature for aggregation with decreasing pH of 15 Y. Ishihara, H. S. Bazzi, V. Toader, F. Godin and
the medium. Among all the copolymers, the random copolymer H. F. Sleiman, Chem.–Eur. J., 2007, 13, 4560–4570.
3-arm-p(DEGMA40-R-DMAEMA18) exhibits aggregation under 16 A. Napoli, M. J. Boerakker, N. Tirelli, R. J. M. Nolte,
the physiological conditions and also exhibits good cell
viability.
N. A. J. M. Sommerdijk and J. A. Hubbell, Langmuir, 2004,
20, 3487–3491.
17 A. Napoli, M. Valentini, N. Tirelli, M. Muller and
J. A. Hubbell, Nat. Mater., 2004, 3, 183–189.
18 M. Yamato, Y. Akiyama, J. Kobayashi, J. Yang, A. Kikuchi and
T. Okano, Prog. Polym. Sci., 2007, 32, 1123–1133.
Acknowledgements
We gratefully acknowledge SERB New Delhi (grant no. SB/SI/OC-
11/2013) for nancial support. S. Das, R. Ghosh and P. Das 19 D. Schmaljohann, Adv. Drug Delivery Rev., 2006, 58, 1655–
acknowledges DST “INSPIRE” program and CSIR for providing
1670.
the fellowship. We acknowledge Dr N. R. Jana of CAM, IACS for 20 R. Langer and D. A. Tirrell, Nature, 2004, 428, 487–492.
helping in MTT assay.
21 (a) A. K. Mishra, N. K. Vishwakarma, V. K. Patel, C. S. Biswas,
T. K. Paira, T. K. Mandal, P. Maiti and B. Ray, Colloid Polym.
Sci., 2014, 292, 1405–1418; (b) P. Pramanik and S. Ghosh, J.
Polym. Sci., Part A: Polym. Chem., 2015, 53, 2444–2451.
References
1 A. V. Dobrynin and M. Rubinstein, Prog. Polym. Sci., 2005, 30, 22 J. F. Lutz, O. Akdemir and A. Hoth, J. Am. Chem. Soc., 2006,
1049–1118. 128, 13046–13047.
2 (a) C. J. F. Rijcken, O. Soga, W. E. Hennink and C. F. van 23 T. Pintauer and K. Matyjaszewski, Coord. Chem. Rev., 2005,
Nostrum, J. Controlled Release, 2007, 120, 131–148; (b)
249, 1155–1184.
P. De and B. S. Sumerlin, Macromol. Chem. Phys., 2013, 24 K. Matyjaszewski and J. Xia, Chem. Rev., 2001, 101, 2921–
214, 272–279. 2990.
3 G. Sukhorukov, A. Fery and H. Mohwald, Prog. Polym. Sci., 25 J.-F. Lutz, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 3459–
2005, 30, 885–897. 3470.
4 (a) W. J. Brittain, S. G. Boyes, A. M. Granville, M. Baum, 26 J. F. Lutz and A. Hoth, Macromolecules, 2006, 39, 893–896.
B. K. Mirous, B. Akgun, B. Zhao, C. Blickle and 27 J. F. Lutz, K. Weichenhan, O. Akdemir and A. Hoth,
M. D. Foster, Adv. Polym. Sci., 2006, 198, 125–147; (b)
S. G. Roy, K. Bauri, S. Pal and P. De, Polym. Chem., 2014, 5, 28 S. Han, M. Hagiwara and T. Ishizone, Macromolecules, 2003,
3624–3633.
36, 8312–8319.
5 (a) E. S. Gil and S. M. Hudson, Prog. Polym. Sci., 2004, 29, 29 S. Das, S. Samanta, D. P. Chatterjee and A. K. Nandi, J. Polym.
Macromolecules, 2007, 40, 2503–2508.
1173–1222; (b) S. Pal, S. G. Roy and P. De, Polym. Chem.,
2014, 5, 1275–1284.
6 (a) Y. Tanaka, J. P. Gong and Y. Osada, Prog. Polym. Sci., 2005,
Sci., Part A: Polym. Chem., 2013, 51, 1417–1427.
30 S. Das, D. P. Chatterjee, S. Samanta and A. K. Nandi, RSC
Adv., 2013, 3, 17540–17550.
30, 1–9; (b) C. de las Heras Alarcon, S. Pennadam and 31 M. Wang, S. Zou, G. Guerin, L. Shen, K. Deng, M. Jones,
C. Alexander, Chem. Soc. Rev., 2005, 34, 276–285; (c)
A. S. Hoffman, Adv. Drug Delivery Rev., 2013, 6, 10–16; (d)
G. C. Walker, G. D. Scholes and M. A. Winnik,
Macromolecules, 2008, 41, 6993–7002.
D. Kuckling and A. Wycisk, J. Polym. Sci., Part A: Polym. 32 N. Tantavichet, M. D. Pritzker and C. M. Burns, J. Appl.
Chem., 2013, 51, 2980–2994; (e) F. Liu and M. W. Urban, Polym. Sci., 2001, 81, 1493–1497.
Prog. Polym. Sci., 2010, 35, 3–23; (f) F. D. Jochumab and 33 S. Yamamoto, J. Pietrasik and K. Matyjaszewski,
P. Theato, Chem. Soc. Rev., 2013, 42, 7468–7483. Macromolecules, 2008, 41, 7013–7020.
7 I. Dimitrov, B. Trzebicka, A. H. E. Muller, A. Dworak and 34 X. Jiang and B. Zhao, Macromolecules, 2008, 41, 9366–
C. B. Tsvetanov, Prog. Polym. Sci., 2007, 32, 1275–1343.
9375.
8784 | RSC Adv., 2016, 6, 8773–8785
This journal is © The Royal Society of Chemistry 2016