936
J.L. Belletire et al. / Journal of Fluorine Chemistry 132 (2011) 925–936
reaction flask, during 5–7 min, through the center of the reflux
condenser using a disposable pipette, at which point a precipitate
was observed. The pear-shaped flask that previously contained
the K2B12F12 solution was rinsed with 2ꢃ 1 mL portions of H2O,
each of which was added dropwise to the refluxing reaction
mixture. After an additional 5 min, the cloudy reaction mixture
was cooled to room temperature and placed in a 3.5 8C refrigerator
overnight. Vacuum filtration, rinsing the solid cake with 2ꢃ 1 mL
of 3.5 8C H2O and air-drying in the Bu¨ chner funnel at room
temperature for ca. 1 h gave a semi-dry solid. The solid was placed
into a 4 dram bottle and dried at 65 8C under vacuum (ca.
10ꢀ4 Torr) in a Electrothermal ChemDry1 apparatus for 18–55 h
to yield the desired anhydrous salt.
629 cmꢀ1. These spectroscopic data essentially are identical to
those listed for salt 6 in Section 4.3.4.
Acknowledgments
The authors thank the AFRL Space and Missiles Division (AFRL/
RZS), Edwards AFB, CA, and ERC, Inc., Huntsville, AL, for funding
support, Dr. Jerry A. Boatz (AFRL/RZSP) and Prof. Herman L. Ammon
(Department of Chemistry and Biochemistry, University of Mary-
land) for helpful technical discussions, and Mr. Brett A. Wight (AFRL/
RZSP) for the Clꢀ ion chromatography analyses of samples of salt 2.
Appendix A. Supplementary data
4.6.1. [1-Me-3-H-imidazolium]2[B12F12] (2)
[H(MeIm)][Cl] (0.254 g, 2.14 mmol) was dissolved in 1 mL
H2O, and K2B12F12 (0.453 g, 1.04 mmol) dissolved in 4 mL H2O
was added dropwise over 7 min, resultant suspension was then
cooled 24 h in the refrigerator, filtered, and vacuum dried 24 h.
Yield: 0.460 g (84.4%) of a slightly off-white solid. 1H NMR
Supplementary data associated with this article can be found, in
References
(400 MHz, DMSO-d6
7.68 (m, 2H); 7.66 (m, 2H); 3.86 (s, 6H). 13C NMR (100 MHz,
DMSO-d6 ( 39.51)): 135.81, 123.15, 119.77, 35.42. HATR-FTIR:
(d 2.50)): d 14.15 (bd. s, 2H); 9.03 (s, 2H),
[1] A.R. Pitochelli, M.F. Hawthorne, J. Am. Chem. Soc. 82 (1960) 3228–3229.
[2] R.N. Grimes, Angew. Chem. Int. Ed. 42 (2003) 1198–1200 (and references
therein).
d
d
3398, 3355, 3179, 3124, 3087, 1640, 1585, 1552, 1442, 1328,
1307, 1216 (B12F122ꢀ), 1141, 1104, 1080, 1008, 877, 843, 763,
719 (B12F122ꢀ), 695, 615 cmꢀ1. A synthesis of this salt 2 in
CH3CN solvent conducted on the same scale is described in
Section 4.5.
[3] J. Aihara, J. Am. Chem. Soc. 100 (1978) 3339–3342.
[4] R.B. King, Chem. Rev. 101 (2001) 1119–1152.
[5] R.T. Sanderson, 1st ed., Inorganic Chemistry, Reinhold, New York, 1967.
[6] K.A. Solntsev, A.M. Mebel, N.A. Votinova, N.T. Kuznetsov, O.P. Charkin, Koord.
Khim. 18 (1992) 296–317.
[7] S.V. Ivanov, S.M. Miller, O.P. Anderson, K.A. Solntsev, S.H. Strauss, J. Am. Chem. Soc.
125 (2003) 4694–4695.
[8] S.A. Shackelford, J.L. Belletire, J.A. Boatz, S. Schneider, A.K. Wheaton, B.A. Wight,
H.L. Ammon, D.V. Peryshkov, S.H. Strauss, Org. Lett. 12 (2010) 2714–2717.
[9] D.V. Peryshkov, S.H. Strauss, J. Fluorine Chem. 131 (2010) 1252–1256.
[10] D.V. Peryshkov, A.A. Popov, S.H. Strauss, J. Am. Chem. Soc. 132 (2010)
13902–13913.
[11] D.V. Peryshkov, E. Goreshnik, Z. Mazej, S.H. Strauss, J. Fluorine Chem. 131 (2010)
1225–1228.
[12] S.A. Shackelford, J.L. Belletire, J.A. Boatz, S. Schneider, A.K. Wheaton, B.A. Wight,
L.M. Hudgens, H.L. Ammon, S.H. Strauss, Org. Lett. 11 (2009) 2623–2626.
[13] J.L. Belletire, S.Schneider, B.A. Wight, S.L. Strauss, S.A. Shackelford, Synth. Comm.
[14] A.S. Larsen, J.D. Holbrey, F.S. Tham, C.A. Reed, J. Am. Chem. Soc. 122 (2000)
7264–7272.
[15] Y. Zhu, C. Ching, K. Carpenter, R. Xu, S. Selvaratnam, N.S. Hosmane, J.A. Maguire,
Appl. Organomet. Chem. 17 (2003) 346–350.
[16] M. Nieuwenhuyzen, K.R. Seddon, F. Teixidor, A.V. Puga, Inorg. Chem. 48 (2009)
889–901.
[17] (a) S.A. Shackelford, J.L. Belletire, Centr. Eur. J. Energ. Mater. 6 (2009) 219–237;
(b) S.A. Shackelford, J.L. Belletire, 12th New Trends in Research on Energetic
Materials (NTREM) International Seminar, Pardubice, Czech Republic, April 1–3,
2009.
[18] (a) S.A. Shackelford, Centr. Eur. J. Energ. Mater. 5 (2008) 75–101;
(b) S.A. Shackelford, 10th New Trends in Research on Energetic Materials
(NTREM) International Seminar, Pardubice, Czech Republic, April 25–27, 2007.
[19] D.V. Peryshkov, A.A. Popov, S.H. Strauss, J. Am. Chem. Soc. 131 (2009)
18393–18403.
[20] Q.-L. Wang, H. Xu, H.-W. Hou, G. Yang, Z. Naturforsch. 64b (2009) 1143–1146.
[21] B. Liu, L. Xu, G.-C. Guo, J.-S. Huang, Inorg. Chem. Commun. 9 (2006) 687–690.
[22] N.E. Brese, M. O’Keeffe, Acta Cryst. B 47 (1991) 192–197.
[23] G. Kaplan, G. Drake, K. Tollison, L. Hall, T. Hawkins, J. Heterocycl. Chem. 42 (2005)
19–27.
[24] D.V. Peryshkov, Ph.D. Dissertation, Colorado State University, 2011.
[25] G.M. Sheldrick, SADABS, V. 2.10—A Program for Area Detector Absorption
Corrections, Bruker AXS, Madison, WI, 2003.
[26] G.M. Sheldrick, APEX2, V. 2.0-2, Bruker AXS, Madison, WI, 2006.
[27] G.M. Sheldrick, SHELXTL, V. 6.12 UNIX, Bruker AXS, Madison, WI, 2001.
4.6.2. [4-NH2-1-Me-1,2,4-triazolium]2[B12F12] (4)
[4-NH2-1-Me-1,2,4-triazolium][I] (0.964 g, 4.27 mmol) was
dissolved in 2 mL H2O, and K2B12F12 (0.902 g, 2.07 mmol) dissolved
in 8 mL H2O was added dropwise over 5 min., resultant suspension
was then cooled 21.5 h in the refrigerator, filtered, and vacuum
dried 18.5 h. Yield: 1.03 g (90.0%) of a slightly off-white solid. 1H
NMR (400 MHz, DMSO-d6
6.95 (s, 4H); 4.02 (s, 6H) and CD3CN (
2H); 5.85 (s, 4H); 4.02 (s, 6H). 13C NMR (100 MHz, DMSO-d6
39.51)): 145.04, 142.95, unknown (3rd peak masked by DMSO)
and CD3CN ( 1.39): 146.13, 143.95, 118.41 (CD3CN), 40.24.
(
d
2.50)):
d
10.06 (s, 2H); 9.16 (s, 2H);
d
1.95): 9.22 (s, 2H); 8.54 (s,
d
(
d
d
d
d
HATR-FTIR: 3386, 3317, 3159, 3120, 1620, 1582, 1567, 1434, 1407,
1220 (B12F122ꢀ), 1170, 1072, 993, 980, 942, 891, 722 (B12F122ꢀ),
659, 621 cmꢀ1
.
4.6.3. [1-NH2-3-Me-1,2,3-triazolium]2[B12F12] (6)
[1-NH2-3-Me-1,2,3-triazolium][I] (0.964 g, 4.26 mmol) was
dissolved in 2 mL H2O, and K2B12F12 (0.901 g, 2.07 mmol)
dissolved in 7 mL H2O was added dropwise over 5 min, resultant
suspension was then cooled 18.5 h in the refrigerator, filtered, and
vacuum dried for 54.5 h. Yield: 1.06 g (92.3%) of a light tan solid.
1H NMR (400 MHz, DMSO-d6
(dovlap., 2H); 8.28 (s, 4H); 4.21 (s, 6H). 13C NMR (100 MHz, DMSO-
d6 39.51)): 131.52, 126.83, unknown (3rd peak masked by
DMSO) and CD3CN ( 1.39): 132.23, 129.59, 41.13. HATR-FTIR:
(d 2.50)); d 8.74 (dovlap., 2H); 8.60
(
d
d
d
d
3374, 3309, 3185, 3166, 1622, 1533, 1434, 1400, 1329, 1218
(B12F122ꢀ), 1090, 1049, 1028, 947, 798, 722 (B12F122ꢀ), 663,