LETTER
Synthesis of Pyrrole Derivatives from Lithiated Methoxyallenes and Imines
1873
(4) a) A. Merz, T. Meyer, Synthesis 1999, 94-99. b) A. Merz, J.
Kronberger, L. Dunsch, A. Neudeck, A. Petr, L. Parkanyi,
Angew. Chem. 1999, 111, 1533-1538; Angew. Chem. Int. Ed.
1999, 38, 1442-1446 and references cited.
(5) For a recent review see: H.-U. Reissig, S. Hormuth, W.
Schade, M. Okala Amombo, T. Watanabe, R. Pulz, A.
Hausherr, R. Zimmer, J. Heterocyclic Chem. 2000, in press.
For general reviews on the reactivity of alkoxyallenes see: a)
R. Zimmer, Synthesis 1993, 165-178. b) R. Zimmer, F. A.
Khan, J. Prakt. Chem. 1996, 338, 92-94.
(6) Initial work: a) S. Hoff, L. Brandsma, J. F. Arens, Recl. Trav.
Chim. Pays-Bas 1968, 87, 1179-1184. b) S. Hoff, L.
Brandsma, J. F. Arens, Recl. Trav. Chim. Pays-Bas 1969, 88,
609-619. For applications to asymmetric syntheses: c) S.
Hormuth, H.-U. Reissig, J. Org. Chem. 1994, 59, 67-73. d) S.
Hormuth, W. Schade, H.-U. Reissig, Liebigs Ann. 1996, 2001-
2006. e) S. Hormuth, H.-U. Reissig, D. Dorsch, Angew. Chem.
1993, 105, 1513-1514; Angew. Chem. Int. Ed. Engl. 1993, 32,
1449-1450.
(7) W. Schade, H.-U. Reissig, Synlett 1999, 632-634.
(8) a) N. A. Nedolya, L. Brandsma, O. A. Tarasova, H. D.
Verkruijsse, B. A. Trofimov, Tetrahedron Lett. 1998, 39,
2409-2410. b) L. Brandsma, V. Yu. Vvedensky, N. A.
Nedolya, O. A. Tarasova, B. A. Trofimov, Tetrahedron Lett.
1998, 39, 2433-2436.
(9) V. Breuil-Desvergnes, P. Compain, J.-M. Vatéle, J. Goré,
Tetrahedron Lett. 1999, 40, 5009-5012.
(10) M. Okala Amombo, Diplomarbeit, Technische Universität
Dresden 1997.
(11) a) R. Albrecht, G. Kresze, B. Mlakar, Chem. Ber. 1964, 97,
483-489. b) B. M. Trost, C. Marrs, J. Org. Chem. 1991, 56,
6468-6470.
(12) For a related approach see: M. Braun, K. Opdenbusch, Liebigs
Ann. 1997, 141-145.
Scheme 4
(13) J. A. Marshall, G. S. Bartley, J. Org. Chem. 1994, 59, 7169-
7171. Also see: A. Claesson, K. Sahlberg, K. Luthman, Acta
Chem. Scand. 1979, B33, 303.
(14) Typical procedure, 1+2Æ3Æ6: Lithiated methoxyallene 2
was generated under an atmosphere of dry argon by treating a
solution of 687 mg (9.80 mmol) methoxyallene in 20 ml of
THF at -40 °C with 4.00 ml (8.82 mmol) of n-BuLi (2.2 M in
hexane). After 5 min a solution of 1.70 g (6.54 mmol) of 1 in
7 ml of THF was added over a period of 5 min, the mixture
was stirred for 2 h at -40 to -20 °C and quenched with 20 ml
of H2O. Warming to room temperature was followed by
extraction with diethyl ether (3 x 20 ml) and drying of the
combined extracts (Na2SO4). Removal of the solvent in vacuo
yielded 2.15 g (99%) of crude 3 as a brown solid, which was
purified by washing with diethyl ether. Compound 3 was
obtained as a yellow solid (1.44 g, 67%, m. p. 100-101 °C).
For analytical data see ref.10
Acknowledgement
Generous support of this work by the Deutsche Forschungsgemein-
schaft (Graduiertenkolleg: “Struktur-Eigenschafts-Beziehungen bei
Heterocyclen”) and the Fonds der Chemischen Industrie (Kekulé
fellowship for A. Hausherr) is most gratefully acknowlegded. We
thank Dr. Stephan Hormuth for preliminary experiments with 1 and
2 and Dr. Margit Gruner for measurements and help during interpre-
tation of numerous 2D-NMR spectra.
References and Notes
(1) New address: Institut für Chemie, Freie Universität Berlin,
Takustr. 3, 14195 Berlin
Cyclization of 3: To 300 mg (0.91 mmol) of allene 3 in 7 ml
of acetone was added 42 mg (0.25 mmol) of AgNO3, and the
resulting mixture was stirred in the dark under argon at room
temperature for 3 h. The mixture was filtered through a pad of
celite with ethyl acetate. The filtrate was concentrated to
afford pure 2,5-dihydropyrrole 6 as a yellow solid (280 mg,
93%, m. p. 155-157 °C).
(2) For recent examples see: K. Ishii, H. Ohno, Y. Takemoto, T.
Ibuka, Synlett 1999, 228-230 and references cited.
(3) Reviews: a) R. J. Sundberg in Comprehensive Heterocyclic
Chemistry (Eds. A. R. Katritzky, C. W. Rees), p. 313-376,
Pergamon, Oxford 1984. b) G. P. Beau in Pyrroles (Ed. R. A.
Jones), The Chemistry of Heterocyclic Compounds (Eds. E. C.
Taylor, A. Weissberger), p. 105-294, Wiley: New York 1990.
c) R. J. Sundberg in Comprehensive Heterocyclic Chemistry II
(Eds. A. R. Katritzky, C. W. Rees, E. F. V. Scriven), p. 119-
206, Pergamon: Oxford 1996. d) S. E. Korostova, A. I.
Mikhaleva, A. M. Vasil’tsov, B. A. Trofimov, Russ. J. Org.
Chem. (Engl. Transl.) 1998, 34, 911-948. e) S. E. Korostova,
A. I. Mikhaleva, A. M. Vasil’tsov, B. A. Trofimov, Russ. J.
Org. Chem. (Engl. Transl.) 1998, 34, 1691-1714. f) For a
recent synthesis employing electron-deficient allene
derivatives and imines: Z. Xu, X. Lu, J. Org. Chem. 1998, 63,
5031-5041.
Analytical data of 6: 1H NMR (CDCl3, 300 MHz): d = 7.51 (d,
J = 8.2 Hz, 2 H, Tos), 7.26 (s, 5 H, Ph), 7.18 (d, J = 8.2 Hz, 2
H, Tos), 5.25-5.22 (m, 1 H, 4-H), 4.57 (q, J = 1.6 Hz, 1 H, 2-
H), 4.30-4.25 (m, 2 H, 5-H), 3.50 (s, 3 H, OMe), 2.38 (s, 3 H,
Me).
13C NMR (CDCl3, 75.5 MHz): d = 156.6 (s, C-3), 143.1,
139.4, 135.4 (3 s, i-C), 129.4, 128.3, 128.0, 127.6, 127.3 (5 d,
Ar, Ph), 89.0 (d, C-4), 67.3 (d, C-2), 57.3 (q, OMe), 52.3 (t, C-
5), 21.5 (q, Me). - IR (KBr): n = 3100-3000 cm-1 ( = C-H),
3000-2840 (C-H), 1670-1600 (C=C), 1350-1310, 1160-1120
Synlett 1999, No. 12, 1871–1874 ISSN 0936-5214 © Thieme Stuttgart · New York