R. Kumareswaran et al. / Tetrahedron Letters 42 (2001) 7493–7495
7495
corresponding cyclized product 1519 was formed, via 14,
in a diastereomeric ratio of 80:20. This suggests that the
intermediate 16 is more rigid than 9 offering a some-
what better diasteroselectivity. Efforts are underway to
explore whether other catalysts will give higher
diastereoselectivities in these reactions.
9. Molander, G. A.; Rzasa, R. M. J. Org. Chem. 2000, 65,
1215.
10. Diaz-Ortiz, A.; Diez-Barra, E.; de la Hoz, A.; Prieto, P.;
Moreno, A.; Langa, F.; Prange, T.; Neuman, A. J. Org.
Chem. 1995, 60, 4160.
11. (a) Davis, M. E. Acc. Chem. Res. 1983, 26, 111; (b)
Holderich, I.; Hesse, W.; Naumann, M. Angew. Chem., Int.
Ed. Engl. 1988, 27, 236.
12. (a) Yadav, J. S.; Reddy, B. V. S.; Rasheed, M. A.; Sampath
Kumar, H. M. Synlett 2000, 487; (b) Torok, B.; London,
G.; Bartok, M. Synlett 2000, 631; (c) Onaka, M.; Shinoda,
T.; Izumi, Y.; Nolen, E. Tetrahedron Lett. 1993, 34, 2525;
(d) Toshima, K.; Ishizua, T.; Matsuo, G.; Nakata, M.
Synlett 1996, 306.
OMe
OMe
MeO
MeO
M+
M+
Z
O
O
O
O
O
H
Ph
+
H
9
M = Lewis Acid
16
In summary, our findings suggest that Nafion-H is a
good catalyst for effecting hetero Diels–Alder reactions
between aromatic aldehydes and imines. However, chi-
ral acetal derived aldehydes and imines are inert
towards Nafion-H, but respond well to Lewis acids,
especially ZnI2.
13. (a) Olah, G. A.; Iyer, P. S.; Prakash, G. K. S. Synthesis
1986, 513; (b) Olah, G. A.; Wang, Q.; Li, X.-Y.; Prakash,
G. K. S. Synlett 1990, 487.
14. (a) Reddy, M. V. R.; Pitre, S. V.; Bhattacharya, I.; Vankar,
Y. D. Synlett 1996, 241; (b) Gupta, A.; Haque, A.; Vankar,
Y. D. Chem. Commun 1996, 1653; (c) Pitre, S. V.; Reddy,
M. V. R.; Vankar, Y. D. J. Chem. Res. 1997, 2162.
15. Gupta, A.; Vankar, Y. D. Tetrahedron 2000, 56, 8525.
16. Kumareswaran, R.; Vankar, P. S.; Reddy, M. V. R.; Pitre,
S. V.; Roy, R.; Vankar, Y. D. Tetrahedron 1999, 55, 1099.
17. Vankar, Y. D.; Reddy, M. V. R.; Chaudhuri, N. C.
Tetrahedron 1994, 50, 11052.
18. Aldehyde 6 was prepared by the Swern oxidation of the
corresponding alcohol, which was obtained from the ketal
of ethyl acetoacetate. All the compounds gave satisfactory
spectral and analytical data.
Acknowledgements
We thank the Department of Science and Technology
and the Council of Scientific and Industrial Research,
New Delhi for financial support. We also thank Profes-
sor G. A. Olah and Professor G. K. S Prakash for the
gift of Nafion-K.
19. Selected data: Compound 8: IR spectrum (neat) wmax: 1650,
1580 cm−1. 1H NMR spectrum (CDCl3, 300 MHz): l 1.44a,
1.46b (2s, 3H, -CH3), 1.95–2.45 (m, 2H, -CH2-), 2.48–2.65
(m, 2H, -CO-CH2-), 3.38b, 3.4a (2s, 6H, 2×-OCH3), 3.45–
References
1. Reddy, B. G.; Kumareswaran, R.; Vankar, Y. D. Tetra-
hedron Lett. 2000, 41, 10333.
3.63 (m, 4H, 2×-CH6 2-OCH3), 3.86–4.09 (m, 2H, 2×methi-
nes), 4.67–4.73 (m, 1H, methine on the pyrone ring),
5.4–5.42 (m, 1H, olefinic proton), 7.34–7.36 (m, 1H, olefinic
proton); 13C NMR (CDCl3, 75 MHz): l 194.00, 163.59,
109.65, 107.50, 77.80, 77.34, 76.66, 72.90, 59.87, 45.55,
26.55; Mass spectrum (m/z): 286 (M+), 255 (M+ −31), 224
(M+ −62). [h]D25=+7.2 (c=1, CH2Cl2). Compound 12: IR
spectrum (neat) wmax: 1640, 1570 cm−1. 1H NMR spectrum
(CDCl3, 300 MHz): l 1.39 (s, 3H), 1.95–2.59 (2m, 2H),
2.85–2.94(m, 2H), 3.38, 3.39,b 3.40, 3.42a (4s, 6H), 3.46–3.62
(m, 4H), 3.83–3.94a and 4.04–4.17b (2m, 2H), 4.41–4.5a and
4.5–4.59b (2m 1H), 5.21 (d, 1H, J=7 Hz), 7.12 (d, 1H, J=7
Hz), 7.24–7.43 (m, 5H); 13C NMR (CDCl3, 75 MHz):
192.79, 147.93, 144.49, 130.03, 124.50, 118.84, 110.60,
102.20, 77.97, 77.60, 77.09, 73.47, 73.72, 68.50, 59.82, 54.36,
41.55, 38.62, 26.70, 19.20; Mass spectrum (m/z): 361 (M+),
172 (M+−189). [h]D25=+58.75 (c=2, CH2Cl2). Compound 15:
2. (a) Danishefsky, S. Acc. Chem. Res. 1981, 14, 400; (b)
Danishefsky, S.; De Nino, M. P. Angew. Chem., Int. Ed.
Engl. 1987, 26, 15; (c) Boger, D. L.; Weinreb, S. M. Hetero
Diels–Alder Methodology in Organic Synthesis; Academic
Press: New York, 1987; (d) Waldman, H. Synthesis 1994,
535.
3. (a) Swindell, C. S.; Tao, M. J. Org. Chem. 1993, 58, 5889;
(b) Barluenga, J.; Aznar, F.; Valdes, C.; Ribas, C. J. Org.
Chem. 1998, 63, 3918.
4. (a) Jorgensen, K. A. Angew. Chem., Int. Ed. 2000, 39, 3559
and references cited therein; (b) Keck, G. E.; Li, X.-Y.;
Krishnamurthy, D. J. Org. Chem. 1995, 60, 5998; (c)
Midland, M. M.; Koops, R. W. J. Org. Chem. 1990, 55,
4647; (d) Bednarski, M.; Danishefsky, S. J. Am. Chem. Soc.
1986, 108, 7060; (e) Dossetter, A. G.; Jamison, T. F.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 1999, 38, 2398; (f)
Hu, Y.-J.;Hung, X.-D.;Yao, Z.-J.;Wu, Y.-L. J. Org. Chem.
1998, 63, 2456; (g) Hattori, K.; Yamamoto, H. Tetrahedron
1993, 49, 1749; (h) Wang, B.; Feng, X.; Cui, X.; Jiang, Y.
Chem. Commun. 2000, 1605.
IR spectrum (neat) wmax: 1660, 1580 cm−1 1H NMR
.
spectrum (CDCl3, 300 MHz): l 2.38–2.79 (m, 2H), 3.30,
3.42 (2s, 6H), 3.62–3.65 (m, 4H), 3.85–4.2 (m, 2H), 4.57a
and 4.79b (2dd, 1H, J=8, 5 Hz), 5.37 (d, 1H, J=6 Hz),
7.27–7.54 (m, 6H). Mass spectrum (m/z): 334 (M+), 303
(M+−31), 272 (M+−62). [h]D25=+19 (c=1, CH2Cl2). [Note:
‘a’ and ‘b’ refer to the peaks for major and minor
diastereomers, respectively.]
5. Badorrey, R.; Cativiela, C.; Diaz-de-Villegas; Galvez, J. A.
Tetrahedron 2000, 38, 2547.
6. Grieco, P. A.; Moher, E. D. Tetrahedron Lett. 1993, 34,
5561.
7. Molander, G. A.; Rzasa, R. M. J. Org. Chem. 2000, 65,
1215.
8. Aggarwal, V. K.; Vennall, G. P.; Davey, P. N.; Newman,
C. Tetrahedron Lett. 1997, 38, 2569.
20. The diastereoselectvity was determined from the 1H NMR
by using Eu(hfc)3 as a shift reagent.
21. This aldehyde was prepared by the Swern oxidation of the
corresponding alcohol, which was obtained by the LiAlH4
reduction of the ketal of ethyl benzoyl formate.