Page 7 of 9
Journal of the American Chemical Society
10) a) Streitwieser, A.; Kim, Y.; Wang, D. Z. R. Org. Lett. 2001,
ACKNOWLEDGMENTS
1
2
3
4
5
6
7
3, 2599. b) Wang, D. Z. R.; Kim, Y. J.; Streitwieser, A. J. Am.
Chem. Soc. 2000, 122, 10754. c) Streitwieser, A.; Wang, D. Z. J.
Am. Chem. Soc. 1999, 121, 6213. d) Wang, D. Z. R.; Streitwieser, A.
Can. J. Chem. 1999, 77, 654. e) Abbotto, A.; Leung, S. S. W.;
Streitwieser, A.; Kilway, K. V. J. Am. Chem. Soc. 1998, 120, 10807.
f) Abu-Hasanayn, F.; Stratakis, M.; Streitwieser, A. J. Org. Chem.
1995, 60, 4688. g) House, H. O.; Gall, M.; Olmstead, H. D. J. Org.
Chem. 1971, 36, 2361.
Financial support from the Spanish Ministerio de Economía,
Industria y Competitividad (CTQ2016-80503-P), and Fondos
FEDER is gratefully acknowledged. PGW was supported by
NSF grant #1464538. MB thanks the Spanish Ministerio de
Economía y Competitividad for a fellowship (BES-2011-
043933). We thank the SCSIE (Universidad de Valencia) for
access to its instrumental facilities.
8
9
11) a) Hand, E. S.; Johnson, S. C.; Baker, D. C. J. Org. Chem.
1997, 62, 1348. b) Finkbeiner, H. J. Org. Chem. 1965, 30, 3414. c)
Finkbeiner, H. L.; Stiles, M. J. Am. Chem. Soc. 1963, 85, 616. d)
Stiles, M.; Finkbeiner, H. L. J. Am. Chem. Soc. 1959, 81, 505. e)
Stiles, M. J. Am. Chem. Soc. 1959, 81, 2598.
12) Sterically hindered secondary amines readily react with
CO2 to form the corresponding carbamates: a) Kennedy, A. R.;
Mulvey, R. E.; Oliver, D. E.; Robertson, S. D. Dalton Trans., 2010,
39, 6190. b) Quaranta, E.; Aresta, M. The Chemistry of N-CO2
Bonds: Synthesis of Carbamic Acids and Their Derivatives, Isocy-
anates, and Ureas in Carbon Dioxide as Chemical Feedstock, M.
Aresta Ed., Wiley-VCH, Weinheim, 2010, Chapter 6. c)
Dell’Amico, D. B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pam-
paloni, G. Chem. Rev. 2003, 103, 3857.
13) a) Tsuda, T.; Chujo, Y.; Takahashi, S.; Saegusa, T. J. Org.
Chem. 1981, 46, 498. b) Tsuda, T.; Chujo, Y.; Nishi, S.; Tawara, K.;
Segusa, T. J. Am. Chem. Soc. 1980, 102, 6384-6385.
14) Lithium iodide was selected over lithium chloride or bro-
mide for its higher solubility in THF.
15) a) Reich, H. J. J. Org. Chem. 2012, 77, 5471-5491. b) Reich,
H. J. Chem. Rev. 2013, 113, 7130. c) Collum, D. B.; McNeil, A. J.;
Ramirez, A. Angew. Chem. Int. Ed. 2007, 46, 3002.
16) a) Hevia, E.; Mulvey, R. E. Angew. Chem. Int. Ed. 2011, 50,
6448. b) Haag, B.; Mosrin, M.; Ila, H.; Malakhov, V.; Knochel, P.
Angew. Chem. Int. Ed. 2011, 50, 9794. c) Gossage, R. A.; Jastrzeb-
ski, J. T. B. H.; van Koten, G. Angew. Chem., Int. Ed. 2005, 44,
1448. d) Tchoubar, B.; Loupy, A. Salt Effects in Organic and Or-
ganometallic Chemistry; VCH: New York, 1992. e) Seebach, D. In
Proceedings of the Robert A. Welch Foundation Conferences on
Chemistry and Biochemistry; Wiley: New York, 1984; p 93. f)
Seebach, D. Angew. Chem. Int. Ed. Engl. 1988, 27, 1624.
17) a) Murphy, L.; Robertson, K. N.; Kemp, R. A.; Tuononen,
H. M.; Clyburne, J. A. C. Chem. Commun. 2015, 51, 3942. b) Yang,
Z. Z.; He, L. N. Beilstein J. Org. Chem. 2014, 10, 1959. c) Nicholls,
R.; Kaufhold, S.; Nguyen, B. N. Catal. Sci. Technol. 2014, 4, 3458.
d) Villiers, C.; Dognon, J. P.; Pollet, R.; Thuéry, P.; Ephritikhine,
M. Angew. Chem. Int. Ed. 2010, 49, 3465. e) Hooker, J. M.; Reibel,
A. T.; Hill, S. M.; Scheller, M. J.; Fowler, J. S. Angew. Chem. Int.
Ed. 2009, 48, 3482.f) Heldebrant, D. J.; Jessop, P. G.; Thomas, C.
A.; Eckert, C. A.; Liotta, C. L. J. Org. Chem. 2005, 70, 5335. g)
Perez, E. R.; Santos, R. H. A.; Gambardella, M. T. P.; de Macedo,
L. G. M.; Rodrigues-Filho, U. P.; Launay, J. C.; Franco, D. W. J.
Org. Chem. 2004, 69, 8005.
ABBREVIATIONS
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
THF, tetrahydrofuran; GC, gas chromatography; MS, mass
spectrometry; NMR, nuclear magnetic resonance; HMPA,
hexamethylphosphoramide; DIPA, diisopropilamine; HMDS,
hexamethyldisilazane; DBU, 1,8-diazabicyclo(5.4.0)undec-7-
ene.
REFERENCES
1) a) Heath, R. J.; Rock, C. O. Nat. Prod. Rep. 2002, 19, 581. b)
R. B. Silverman, The Organic Chemistry of Enzyme-Catalyzed
Reactions, Academic Press, San Diego (California), 2000, p. 289.
2) Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic
Chemistry, 1st Ed., Oxford University Press: Manchester, 2000, p.
663-688.
3) a) Nakamura, S. Org. Biomol. Chem. 2014, 12, 394. b) Wang,
Z. L. Adv. Synth. Catal. 2013, 355, 2745. c) Pan, Y.; Tan, C. H.
Synthesis 2011, 13, 2044. d) Blanchet, J.; Baudoux, J.; Amere, M.;
Lasne, M. C.; Rouden, J. Eur. J. Org. Chem. 2008, 5493.
4) a) Luo, J.; Preciado, S.; Larrosa, I. J. Am. Chem. Soc. 2014,
136, 4109. b) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017,
117, 8864.
5) a) Kikuchi, S.; Sekine, K.; Ishida, T.; Yamada, T. Angew.
Chem. Int. Ed. 2012, 51, 6989. b) Beckman, E. J.; Munshi, P. Green
Chem. 2011, 13, 376. c) Van Ausdall, B. R.; Poth, N. F.; Kincaid, V.
A.; Arif, A. M.; Louie, J. J. Org. Chem. 2011, 76, 8413. d) Tommasi,
I.; Sorrentino, F. Tetrahedron Lett. 2009, 50, 104. e) Flowers, B. J.;
Gautreau-Service, R.; Jessop, P. G. Adv. Synth. Catal. 2008, 350,
2947. f) Hogeveen, H.; Menge, W. M. P. B. Tetrahedron Lett.
1986, 27, 2767. g) Mori, H. Bull. Chem. Soc. Jpn. 1988, 61, 435. h)
Tirpak, R. E.; Olsen, R. S.; Rathke, M. W. J. Org. Chem. 1985, 50,
4877. i) Haruki, E.; Arakawa, M.; Matsumura, N.; Otsuji, Y.;
Imoto, E. Chem. Lett. 1974, 3, 427. j) Corey, E. J.; Chen, R. H. K. J.
Org. Chem. 1973, 38, 4086. k) Bottaccio, G.; Chiusoli, G. P. Chem.
Commun. 1966, 618.
6) a) Häuβermann, A.; Rominger, F.; Straub, B. F. Chem. Eur.
J. 2012, 18, 14174. b) Sauers, C. K.; Jencks, W. P.; Groh, S. J. Am.
Chem. Soc. 1975, 97, 5546. c) Button, R. G.; Taylor, P. J. J. Chem.
Soc., Perkin Trans. 2 1973, 557. d) Crosby, J.; Stone, R.; Lienhard,
G. E. J. Am. Chem. Soc. 1970, 92, 2891. e) Crosby, J.; Lienhard, G.
E. J. Am. Chem. Soc. 1970, 92, 5707. f) Hall Jr., G. A.; Hanrahan, E.
S. J. Phys. Chem. 1965, 69, 2402. g) Pedersen, K. J. J. Am. Chem.
Soc. 1936, 58, 240. h) Brown, B. R. Q. Rev. Chem. Soc. 1951, 5, 131.
i) Westheimer, F. H.; Jones, W. A. J. Am. Chem. Soc. 1941, 63,
3283.
18) Alkyl halide 3 competes with the conjugate acid BH+ for
the nucleophilic and basic species 2(Li+, COOLi) (Scheme 5).
The alkylation reaction removes dianion 2(Li+,COOLi) from the
solution and, thus, contributes to prevent the disproportionation
path (Scheme 5). For this reason we performed these reactions
with reactive alkyl halides 3p-r. The use of less reactive alkyl
halides 3 will require further adjustment of the reaction condi-
tions.
19) a) Gimbert, Y.; Lesage, D.; Fressigné, C.; Maddaluno, J. J.
Org. Chem. 2017, 82, 8141. B) Lesage, D.; Barozzino-Consiglio, G.;
Duwald, R.; Fressigné, C.; Harrison-Marchand, A.; Faull, K. F.;
Maddaluno, J.; Gimbert, Y. J. Org. Chem. 2015, 80, 6441.
20) a) Vedejs, E.; Lee, N. J. Am. Chem. Soc. 1995, 117, 891. b)
Seebach, D.; Boes, M.; Naef, R.; Scheizer, W. B. J. Am. Chem. Soc.
1983, 105, 5390.
7) a) Kluger, R.; Tittmann, K. Chem. Rev. 2008, 108, 1797. b)
Kluger, R.; Mundle, S. O. C. Adv. Phys. Org. Chem. 2010, 44, 357.
c) Kluger, R.; Howe, G. W.; Mundle, S. O. C. Adv. Phys. Org.
Chem. 2013, 47, 85.
8) a) Huang, C. L.; Wu, C. C.; Lien, M. H. J. Phys. Chem. A
1997, 101, 7867. b) Ferris, J. P.; Miller, N. C. J. Am. Chem. Soc.
1966, 88, 3522.
9) a) Gao, J. J. Am. Chem. Soc. 1995, 117, 8600. b) Kemp, D. S.;
Paul, K. G. J. Am. Chem. Soc. 1975, 97, 7305. d) Kemp, D. S.; Cox,
D. D.; Paul, K. G. J. Am. Chem. Soc. 1975, 97, 7312. e) Casey, M. L.;
Kemp, D. S.; Paul, K. G.; Cox, D. D. J. Org. Chem. 1973, 38, 2294.
f) Kemp, D. S.; Paul, K. J. Am. Chem. Soc. 1970, 92, 2553.
ACS Paragon Plus Environment