show various biological properties and are often used as
enzyme inhibitors2aꢀc and drugs.2d We envision that the
combined molecules of imidazo[1,2-a]quinoxaline and
benzimidazole frameworks, benzo[4,5] imidazo[1,2-a]-
quinoxaline derivatives, would be biologically active mo-
lecules and intermediates. However, the methods for pre-
paration of benzo[4,5]imidazo[1,2-a]quinoxalines remain
rare. The Maes group presented a Pd-catalyzed synthetic
method to construct imidazo[1,2-a]quinoxalines from
2-chloro-3-iodopyridine or 2,3-dibromopyridine, but this
method needs a multistep synthesis.3a Reeves et al. devel-
oped a Cu-catalyzed strategy from 2-formylpyrroles and
o-aminoiodoarenes to assemble these compounds, but this
approach needs a high temperature and very long reaction
time.3b Shen et al. synthesized benzo[4,5]imidazo[1,2-a]-
quinoxaline derivatives from 1-fluoro-2-nitrobenzene and
2-bromoanilines, but this method needs a multistep synth-
esis and high temperature.4 Therefore, it is highly desirable
to develop a convenient, efficient approach for the synth-
esis of these heterocycles.
Table 1. Optimization of the Reaction Conditionsa
entry
cat.
ligand
base
solvent yield (%)b
1
Cu(OAc)2 H2O
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L2
L3
L4
L5
-
Cs2CO3 NMP
96
90
53
67
21
19
74
67
92
64
59
trace
82
73
47
72
84
trace
65
84
93
83
95
3
2
Cu(OAc)2 H2O
K2CO3
K3PO4
KOH
NMP
NMP
NMP
3
3
Cu(OAc)2 H2O
3
4
Cu(OAc)2 H2O
3
5
Cu(OAc)2 H2O
NaOt-Bu NMP
3
6
Cu(OAc)2 H2O
KOt-Bu
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
THF
3
7
CuI
8
CuBr
CuCl
CuBr2
Copper-catalyzed Ullmann coupling reactions have
made significant progress,5ꢀ9 and the N-arylation strategy
has been extensively explored to construct nitrogen hetero-
cycles.10ꢀ13 Many pharmaceutical molecules have been
9
10
11
12
13
14
15
16
17
18c
19
20
21
22
CuCl2 2H2O
3
ꢀ
Cu(OAc)2 H2O
3
3
3
3
3
3
3
3
Cu(OAc)2 H2O
(2) (a) Zarrinmayeh, H.; Nunes, A. M.; Ornstein, P. L.; Zimmerman,
D. M.; Arnold, M. B.; Schober, D. A.; Gackenheimer, S. L.; Bruns,
R. F.; Hipskind, P. A.; Britton, T. C.; Cantrell, B. E.; Gehlert, D. R.
J. Med. Chem. 1998, 41, 2709. (b) White, A. W.; Almassy, R.; Calvert,
A. H.; Curtin, N. J.; Griffin, R. J.; Hostomsky, Z.; Maegley, K.; Newell,
D. R.; Srinivasan, S.; Golding, B. T. J. Med. Chem. 2000, 43, 4084. (c)
Hauel, N. H.; Nar, H.; Priepke, H.; Ries, U.; Stassen, J.; Wienen, W.
J. Med. Chem. 2002, 45, 1757. (d) VelIk, J.; Baliharova, V.; Fink-Gremmels,
J.; Bull, S.; Lamka, J.; Skalova, L. Res. Vet. Sci. 2004, 76, 95.
(3) (a) Rauws, T. R. M.; Biancalani, C.; Schutter, J. W. D.; Maes,
B. U. W. Tetrahedron 2010, 66, 6958. (b) Reeves, J. T.; Fandrick, D. R.;
Tan, Z.; Senanayake, C. H. J. Org. Chem. 2010, 75, 992.
(4) Meng, T.; Zhang, Y.; Li, M.; Wang, X.; Shen, J. ACS Comb. Sci.
2010, 12, 222.
Cu(OAc)2 H2O
Cu(OAc)2 H2O
Cu(OAc)2 H2O
Cu(OAc)2 H2O
L1
L1
L1
L1
L1
L1
Cu(OAc)2 H2O
DMSO
DMF
dioxane
toluene
NMP
Cu(OAc)2 H2O
Cu(OAc)2 H2O
3
3
Cu(OAc)2 H2O
23d Cu(OAc)2 H2O
3
a Reaction conditions: N-(2-iodophenyl)-4-methylbenzenesulfon-
amide 7a (0.5 mmol), 2-(chloromethyl)-1H-benzo[d]imidazole 8a
(0.5 mmol), Cu (10 mol %), ligand (20 mol %), base (3.5 equiv), solvent
(3 mL), 80 °C, in air. b Isolated yield. c Reaction was refluxed. d Reaction
was carried out under N2.
(5) For recent reviews on copper-catalyzed cross-couplings, see: (a)
Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem.
Soc. 2001, 123, 7727. (b) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
(c) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428. (d) Ley, S. V.;
Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (e) Beletskaya,
I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337. (f) Evano, G.;
Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054. (g) Monnier, F.;
Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954. (h) Corbet, J.-P.;
synthesized by the use of Cu-catalyzed coupling strategy.14
However, most of these reactions were performed under a
nitrogen or argon atmosphere, which could prevent oxida-
tion of the catalysts. In particular, the use of inexpensive
but less reactive aryl chlorides in Cu-catalyzed coupling is
still a challenge compared to the commonly used aryl
bromides and aryl iodides. In addition, the application of
Cu-catalyzed transformation for benzo[4,5]imidazo[1,2-a]-
quinoxalines is rarely reported. On the basis of base-
catalyzed elimination of the sulfinate group from N-tosyl
derivatives to afford imines,15 we used N-tosyl-2-haloanilines
ꢀ
Mignani, G. Chem. Rev. 2006, 106, 2651. (i) Hassan, J.; Sevignon, M.;
Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
(6) (a) Altman, R. A.; Koval, E. D.; Buchwald, S. L. J. Org. Chem.
2007, 72, 6190. (b) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am.
Chem. Soc. 2002, 124, 11684. (c) Altman, R. A.; Buchwald, S. L. Org.
Lett. 2006, 8, 2779.
(7) (a) Xiong, X.; Jiang, Y.; Ma, D. Org. Lett. 2012, 14, 2552. (b)
Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164. (c) Ma, D.;
Geng, Q.; Zhang, H.; Jiang, Y. Angew. Chem., Int. Ed. 2010, 49, 1291. (d)
Yuan, Q.; Ma, D. J. Org. Chem. 2008, 73, 5159.
(8) (a) Chen, W.; Zhang, Y.; Zhu, L.; Lan, J.; Xie, R.; You, J. J. Am.
Chem. Soc. 2007, 127, 13879. (b) Zhu, L.; Cheng, L.; Zhang, Y.; Xie, R.;
You, J. J. Org. Chem. 2007, 72, 2737.
(9) Maheswaran, H.; Krishna, G. G.; Prasanth, K. L.; Srinivas, V.;
Chaitanya, G. K.; Bhanuprakash, K. Tetrahedron 2008, 64, 2471.
(10) (a) Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem., Int. Ed.
2009, 48, 348. (b) Wang, F.; Liu, H.; Fu, H.; Jiang, Y.; Zhao, Y. Org.
Lett. 2009, 11, 2469. (c) Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. Angew.
Chem., Int. Ed. 2009, 48, 1114.
(14) (a) Verma, A. K.; Kesharwani, T.; Singh, J.; Tandon, V.;
Larock, R. C. Angew. Chem., Int. Ed. 2009, 48, 1138. (b) Vaillard,
V. A.; Rossi, R. A.; Martin, S. E. Org. Biomol. Chem. 2011, 9, 4927. (c)
Sang, P.; Yu, M.; Tu, H.; Zou, J.; Zhang, Y. Chem. Commun. 2013, 49,
701.
(11) (a) Chen, D.; Shen, G.; Bao, W. Org. Biomol. Chem. 2009, 7,
4067. (b) Chen, D.; Bao, W. Adv. Synth. Catal. 2010, 352, 955.
(12) Kitching, M. O.; Hurst, T. E.; Snieckus, V. Angew. Chem., Int.
Ed. 2012, 51, 2925.
(15) (a) Robertson, A. V.; Francis, J. E.; Witkop, B. J. Am. Chem.
Soc. 1962, 84, 1709. (b) Jackson, A. H.; Kenner, G. W.; Terry, W. G.
Tetrahedron Lett. 1962, 20, 921. (c) Negishi, E.; Day, A. R. J. Org. Chem.
1965, 30, 43. (d) Sarges, R.; Lyga, J. W. J. Heterocycl. Chem. 1988, 25,
1475.
(13) Kshirsagar, U. A.; Argade, N. P. Org. Lett. 2010, 12, 3716.
B
Org. Lett., Vol. XX, No. XX, XXXX