9282
J . Org. Chem. 1999, 64, 9282-9285
We describe herein a short-step, catalytic asymmetric
F or m a l Asym m etr ic Syn th esis of a
Ch olester ol Absor p tion In h ibitor Bea r in g a
2-Aza sp ir o[3.5]n on a n -1-on e Moiety
synthesis of substituted 2-azaspiro[3.5]nonan-1-one 8, the
key intermediate for Sch 58053 1.9
Takeshi Kambara and Kiyoshi Tomioka*
Graduate School of Pharmaceutical Sciences, Kyoto
University, Yoshida, Sakyo-ku, Kyoto 606-8501, J apan
Received J une 8, 1999
In tr od u ction
Azetidin-2-one has been known as the central motif of
the so-called â-lactam antibiotics.1 The recent discovery
of potent cholesterol absorption inhibition (CAI) by a class
of azetidinones renewed interest in this class of com-
pounds.2 Subsequent work by the Schering-Plough group
led to the further discovery that conformationally fixed
spiro-fused azetidin-2-ones 1 and 2 also displayed potent
CAI activity.3 These efforts have stimulated significant
synthetic interest in developing asymmetric processes.4
The approaches to these types of azetidinones have
employed chiral auxiliary- and chiral pool-based chem-
istry.5,6 A recently reported brilliant exception for the
construction of (R)-azetidin-2-one was the catalytic asym-
metric aldol strategy followed by amination and cycliza-
tion.7 Clearly, a catalytic and short-step asymmetric
condensation process of an enolate with an imine would
be much more effective to afford directly the desired
azetidin-2-one. We have been engaged in the catalytic
asymmetric condensation of a lithium ester enolate with
an imine employing an external chiral ligand strategy.8
Resu lts a n d Discu ssion
The synthetic strategy was to construct the spiro-fused
azetidinone with the desired chiral center via an ester
enolate-imine condensation. Our methodology employed
for the condensation can be divided into two categories.
One uses a ternary complex reagent that is comprised of
a lithium ester enolate, a lithium amide, and a chiral
ligand 5,8,10 and the other uses a binary complex11 of a
lithium ester enolate with the chiral ligands 5 or 10. We
examined both methodologies because such reagents are
highly effective and readily available.
Our initial attempt at the asymmetric condensation of
4-fluoroaniline imine of 4-benzyloxybenzaldehyde 4 with
the ternary reagent of lithium ester enolate 3,8,10 gener-
ated from 2 equiv of 2-methyl-1-(methylethyl)propyl
2-methylpropanoate, 2.6 equiv of dimethyl ether ligand
5,12 and 4.4 equiv of LDA in toluene, produced only a
trace amount of the desired azetidinone 6. Since the
addition product was observed by TLC, the cyclization
was considered to have suffered from an excess of lithium
amide or lithium enolate. This problem was solved by
addition of 1 equiv of methanol to quench the excess of
lithium amide or lithium enolate prior to warming up
for cyclization. Thus, after the reaction of the ternary
complex of 3 with 4 was conducted at -60 °C for 8 h,
methanol was added. The reaction mixture was allowed
to warm to 10 °C over 2 h to afford 6 in 84% yield. The
selectivity was determined to be 90% ee by a chiral
stationary-phase HPLC.13
(1) Lukacs, G.; Ohno, M. Eds, Recent Progress in the Chemical
Synthesis of Antibiotics; Springer-Verlag: Berlin, 1990.
(2) (a) Burnett, D. A.; Caplen, M. A.; Davis, H. R., J r.; Burrier, R.
E.; Clader, J . W. J . Med. Chem. 1994, 37, 1733-1736. (b) Salisbury,
B. G.; Davis, H. R.; Burrier, R.; Burnett, D. A.; Boykow, G.; Caplen,
M. A.; Clemmons, A. L.; Compton, D. S.; Hoos, L. M.; McGregor, D.
G.; Schnitzer-Polokoff, R.; Smith, A. A.; Weig, B. C.; Zilli, D. L.; Clader,
J . W.; Sybertz. E. J . Atherosclerosis 1995, 115, 45.
(3) Dugar, S.; Clader, J .; Chan, T.-M.; Davis, H., J r. J . Med. Chem.
1995, 38, 4875-4877.
(4) For the reviews, see: (a) Georg, G. I. The Organic Chemistry of
â-Lactams VCH: New York, 1993. (b) Williams, R. M. Synthesis Of
Optically Active R-Amino Acids; Pergamon Press: New York, 1989.
(c) Seyden-Penne, J . Chiral Auxiliaries and Ligands in Asymmetric
Synthesis; J ohn Wiley and Sons: New York, 1995.
(5) (a) Shirai, F.; Nakai, T. Tetrahedron Lett. 1988, 29, 6461-6464.
(b) Burnett, D. A. Tetrahedron Lett. 1994, 35. 7339-7342. (b) Dugar,
S.; Clader, J . W.; Chan, T. M.; Davis, H. R., J r. J . Med. Chem. 1995,
38, 4875-4877. (c) Browne, M.; Burnett, D. A.; Caplen, M. A.; Chen,
L.-y.; Clader, J . W.; Domalski, M.; Dugar, S.; Pushpavanam, P.; Sher,
R.; Vaccaro, W.; Viziano, M.; Zhao, H. Tetrahedron Lett. 1995, 36,
2555-2558. (d) McKittrick, B. A.; Dugar, S.; Crader, J . W.; Davis, H.
R., J r.; Czarniecki, M. Bioorg. Med. Chem. Lett. 1996, 6, 1947-1950.
(e) Clader, J . W.; Burnett, D. A.; Caplen, M. A.; Domalski, M. S.; Dugar,
S.; Vaccaro, W.; Sher, R.; Browne, M. E.; Zhao, H.; Burrier, R. E.;
Salisbury, B.; Davis, H. R., J r. J . Med. Chem. 1996, 39, 3684-3693.
(6) Synthesis of spiro-fused azetidinone: (a) Wittig, G.; Hesse, A.
Liebigs Ann. Chem. 1976, 500-510. (b) Spurr, P. R.; Hamon, D. P. G.
J . Am. Chem. Soc. 1983, 105, 4734-4739. (c) Ikeda, M.; Uchino, T.;
Ishibashi, H.; Tamura, Y.; Kido, M. J . Chem. Soc., Chem. Commun.
1984, 758-759. (d) Mullen, G. B.; Georgiev, V. S. Heterocycles 1986,
24, 3441-3446. (e) Ishibashi, H.; Nakamura, N.; Tatsunori, S.;
Takeuchi, M.; Ikeda, M. Tetrahedron Lett. 1991, 32, 1725-1728. (f)
Le Blanc, S.; Pete, J .-P.; Piva, O. Tetrahedron Lett. 1992, 33, 1993-
1996. (g) Fujisawa, T.; Ukaji, Y.; Noro, T.; Date, K.; Shimizu, M.
Tetrahedron 1992, 48, 5629-5638. (h) Toda, F.; Miyamoto, H.; Takeda,
K.; Matsugawa, R.; Maruyama, N. J . Org. Chem. 1993, 58, 6208-6211.
(i) Chen, L.; Zaks, A.; Chacklamanil, S.; Dugar, S. J . Org. Chem. 1996,
61, 8341-8343.
Encouraged by the high enantioselectivity, we then
examined the condensation reaction of a lithium ester
enolate 7 bearing the requisite protected 4-oxocyclohexyl
moiety. The reaction of 7a with 4 was conducted under
the ternary complex reagent conditions, 7a -5-lithium
(8) Fujieda, H.; Kanai, M.; Kambara, T.; Iida, A.; Tomioka, K. J .
Am. Chem. Soc. 1997, 119, 2060-2061.
(9) After submission of our paper, a diastereo- and enantioselective
synthesis of cholesterol absorption inhibitors has been reported. Wu,
G.; Wong, Y.; Chen, X.; Ding, Z. J . Org. Chem. 1999, 64, 3714-3718.
(10) Kambara, T.; Hussein, M. A.; Fujieda, H.; Iida, A.; Tomioka,
K. Tetrahedron Lett. 1998, 39, 9055-9058.
(11) (a) Tomioka, K.; Fujieda, H.; Hayashi, S.; Hussein, M. A.;
Kambara, T.; Nomura, Y.; Kanai, M.; Koga, K. Chem. Commun. 1999,
715-716. (b) Kambara, T.; Tomioka, K. Chem. Pharm. Bull. 1999, 47,
720-721.
(12) Shindo M.; Koga K.; Tomioka, K. J . Org. Chem. 1998, 63, 9351-
9357.
(7) Wu, G.; Tormos, W. J . Org. Chem. 1997, 62, 6412-6414.
(13) The absolute configuration of 6 has not yet been determined.
10.1021/jo990933h CCC: $18.00 © 1999 American Chemical Society
Published on Web 11/23/1999