G. A. Breault et al. /Bioorg. Med. Chem. Lett. 13 (2003) 2961–2966
2965
Initially, we explored multi-atom substituents at the
5-position attemptingto pick up the interactions that
N-alkylation provided. However we were unable to
improve activity. Lookingmore broadly, we found that
halogens, especially chloro 22 and bromo 23, improved
the potency against both CDK2 and CDK4. However,
this improvement was not accompanied by the good
selectivity that had been observed for the N-alkylated
compounds (Table 2). These results suggested that the
smaller 5-substituents were not occupyingthe same part
of the bindingsite as the N-alkyl group. The X-ray
structure of CDK2 in complex with 23 was determined,
and, as anticipated, the bridging water molecule
remained in place and the bromo substituent packed
against Phe80 (Fig. 2).
2. Barnes, D. M.; Gillet, C. E. Breast Cancer Res. Treat. 1998,
52, 1.
3. Roussel, M. F. Oncogene 1999, 18, 5311.
4. Nevins, J. R. Hum. Mol. Genet. 2001, 10, 699.
5. Tsao, H.; Benoit, E.; Sober, A. J.; Thiele, C.; Haluska, F. G.
Cancer Res. 1998, 58, 109.
6. Kimball, S. D.; Webster, K. R. In Annual Reports in Med-
icinal Chemistry; Doherty, A. M., Ed.; Academic: San Diego,
2001; Vol. 36 p 139, and references therein.
7. Ikuta, M.; Kamata, K.; Fukasawa, K.; Honma, T.;
Machida, T.; Hirai, H.; Suzuki-Takahashi, I.; Hayama, T.;
Nishimura, S. J. Biol. Chem. 2001, 276, 27548.
8. Carini, D. J.; Kaltenbach, R. F.; Liu, J.; Benfield, P. A.;
Boylan, J.; Boisclair, M.; Brizuela, L.; Burton, C. R.; Cox, S.;
Grafstrom, R.; Harrison, B. A.; Harrison, K.; Akamike, E.;
Markwalder, J. A.; Nakano, Y.; Seitz, S. P.; Sharp, D. M.;
Trainor, G. L.; Sielecki, T. M. Bioorg. Med. Chem. Lett. 2001,
11, 2209.
Increasingthe bulk of the 5-substituent lead to
increased activity, possibly because the bioactive ringB
orientation becomes a more favourable small molecule
conformation (1 cf. 20). Increasingthe 5-substituent
polarisability also leads to increased activity, possibly
due to improved interactions with the p cloud of the
Phe80 aromatic ring( 21–23).
9. Honma, T.; Hayashi, K.; Aoyama, T.; Hashimoto, N.;
Machida, T.; Fukasawa, K.; Iwama, T.; Ikeura, C.; Suzuki-
Takahashi, I. J. Med. Chem. 2001, 44, 4615.
10. Fry, D. W.; Bedford, D. C.; Harvey, P. H.; Fritsch, A.;
Keller, P. R.; Wu, Z.; Dobrusin, E.; Leopold, W. R.; Fattaey,
A.; Garrett, M. D. J. Biol. Chem. 2001, 276, 16617.
11. Soni, R.; O’Reilly, T.; Furet, P.; Muller, L.; Stephan, C.;
Zumstein-Mecker, S.; Fretz, H.; Fabbro, D.; Chaudhuri, B. J.
Natl. Cancer Inst. 2001, 93, 436.
This led us to consider whether combining5-substitu-
tion and N-alkylation might provide compounds that
are both potent and selective. These compounds were
prepared accordingto Scheme 3 startingwith the
appropriately substituted dichloropyrimidine. Our work
in this area led us to compound 24 that had an IC50 for
CDK4 of 0.01 mM. The combination of 5- substitution
and N-alkylation gave not only good potency versus
CDK4 but also good selectivity (24, CDK2 IC50 0.2
mM).
12. Honma, T.; Yoshizumi, T.; Hashimoto, N.; Hayashi, K.;
Kawanishi, N.; Fukasawa, K.; Takaki, T.; Ikeura, C.; Ikuta,
M.; Suzuki-Takahashi, I.; Takashi, H.; Nishimura, S.; Mor-
ishima, H. J. Med. Chem. 2001, 44, 4628.
13. Soni, R.; Muller, L.; Furet, P.; Schoepfer, J.; Stephan, C.;
Zumstein-Mecker, S.; Fretz, H.; Chaudhuri, B. Biochem. Bio-
phys. Res. Commun. 2000, 275, 877.
14. Jeong, H.-W.; Kim, M.-R.; Son, K.-H.; Young Han, M.;
Ha, J.-H.; Garnier, M.; Meijer, L.; Kwon, B.-M. Bioorg. Med.
Chem. Lett. 2000, 10, 1819.
15. Ryu, C.-K.; Kang, H.-Y.; Lee, S. K.; Nam, K. A.; Hong,
C. Y.; Ko, W.-G.; Lee, B.-H. Bioorg. Med. Chem. Lett. 2000,
10, 461.
16. Beattie, J. F.; Breault G. A.; Ellston, R. P. A.; Green
S.; Jewsbury, P. J.; Midgely C. J.; Naven, R. T.; Pauptit,
R.A.; Tucker, J. A.; Pease, J. E. Bioorg. Med. Chem. Lett.
In press.
17. Breault, G. A.; Pease, J. E. PCT Int. Application WO
0012485 A1 20000309.
18. Protein and crystals were obtained accordingto estab-
lished procedures19,20 Diffraction data were collected on
beamline 14.3 at ESRF, Grenoble, at 100 K. Data processing,
data reduction and structure solution by molecular replace-
In conclusion, we have demonstrated that usingour
understandingof the bindingmode, we were able to
convert our initial 4,6-bis anilino pyrimidine series to
the 2,4-bis anilino pyrimidines. The 2,4-bis anilino pyri-
midines are also potent and selective inhibitors of
CDK4. However potency and SAR are not mirrored in
the two series which we believe is due to conformational
variability in particular of the B ring, and the scope for
different substitution in the pyrimidine core.
21
ment were carried out usingprograms from the CCP4 suite.
Compounds 11A and 23 were modelled as racemic mixtures of
the chiral alcohol usingInsightII, 22 and modelled into electron
23
density usingQUANTA.
24
The protein complex model was
and final structures25,26 have been
refined usingCNX,
deposited in the Protein Data Bank with deposition codes
1h01 and 1h08 together with structure factors and detailed
experimental conditions.
19. Lawrie, A. M.; Noble, M. E.; Tunnah, P.; Brown, N. R.;
Johnson, L. N.; Endicott, J. A. Nat. Struct. Biol. 1997, 4, 796.
20. Legraverend, M.; Tunnah, P.; Noble, M.; Ducrot, P.;
Ludwig, O.; Grierson, D. S.; Leost, M.; Meijer, L.; Endicott,
J. J. Med. Chem. 2000, 43, 1282.
Acknowledgements
We are grateful for the excellent support we have
received from Michael Block and would also like to
thank Sandra Oakes for repeat enzyme measurements.
21. CCP4 Acta Crystallogr. 1994, D50, 760.
22. InsightII, Accelrys.
23. Quanta2000, Accelrys.
24. CNX version 2000.1, Accelrys.
References and Notes
25. Crystallographic statistics for 11A are: space group
P212121, unit cell 53.1, 70.7, 72.5 A, resolution 1.8 A, 24527
1. Sherr, C. J. Science 1996, 274, 1672.