1824
J. Am. Chem. Soc. 2000, 122, 1824-1825
Organolanthanide-Catalyzed Intramolecular
Hydrophosphination/Cyclization of Phosphinoalkenes
and Phosphinoalkynes
Michael R. Douglass and Tobin J. Marks*
Department of Chemistry
Northwestern UniVersity
EVanston, Illinois 60208-3113
ReceiVed October 11, 1999
Although the catalytic addition of P-H bonds to C-C multiple
bonds is a highly desirable transformation, it is generally difficult
to accomplish with transition metal complexes.1 In contrast,
organolanthanide-mediated intramolecular hydroamination/cy-
clization of aminoalkenes,2 aminoalkynes,3 and aminoallenes4 has
been shown to have significant selectivity and generality, raising
the intriguing question of whether the corresponding hydrophos-
phination processes might also be feasible. Thermodynamic
considerations for a prospective organolanthanide-catalyzed hy-
drophosphination process (Figure 1) predict insertion (step i) to
be exothermic (∼-33 kcal/mol for alkynes) or approximately
thermoneutral (alkenes, ∼+2 kcal/mol) and subsequent Ln-C
protonolysis (step ii) to be exothermic (∼-7 kcal/mol for alkynes;
-17 kcal/mol for alkenes).5,6 The resulting phosphorus hetero-
cycles belong to a class of interest as alkaloid mimics7 and as
ligand building blocks in asymmetric catalysis.8 Herein we report
the catalytic intramolecular hydrophosphination/cyclization of
phosphinoalkenes and phosphinoalkynes using organolanthanide
precatalysts of the type Cp′2LnCH(TMS)2 (Cp′ ) η5-C5Me5; Ln
) La, Sm, Y; TMS ) SiMe3) and Me2Si(Me4C5)(tBuN)-
SmNTMS2, and observations on factors affecting the scope,
diastereoselectivity, and kinetics of these transformations vis-a`-
vis the nitrogen analogues.9,10
Figure 1. Proposed catalytic cycle for organolanthanide-mediated
hydrophosphination/cyclization of phosphinoalkenes and phosphi-
noalkynes.
Although the synthesis of primary and secondary phosphines
has been explored, few general routes are available.11 The
synthesis of secondary phenyl alkenyl phosphines (eq 1) can be
accomplished by reaction of KPPh2 with the desired alkenyl
fragment bearing an appropriate leaving group, followed by Na/
NH3(l) or Li/THF12 cleavage of a single phenyl substituent.
Protolytic workup yields the desired secondary phosphine.13
Primary phosphines were synthesized via dicholoroalane reduction
of phosphonate precursors (eq 2),14 in turn prepared via Arbuzov
reaction of P(OEt)3 with the corresponding alkenyl or alkynyl
halide.13,15
(1) Hydrophosphination mediated by Pd, Pt, Ni complexes: (a) Wicht, D.
K.; Kourkine, I. V.; Lew, B. M.; Nthenge, J. M.; Glueck, D. S. J. Am. Chem.
Soc. 1997, 119, 5039-5040. (b) Han, L.-B.; Tanaka, M. J. Am. Chem. Soc.
1996, 118, 1571-1572. (c) Hoye, P. A.; Pringle, P. G.; Smith, M. B.; Worboys,
K. J. Chem. Soc., Dalton Trans. 1993, 74, 269-74. (d) Pringle, P. G.; Smith,
M. B. J. Chem. Soc., Chem. Commun. 1990, 1701-1702.
(2) (a) Giardello, M. A.; Conticello, V. P.; Brard, L.; Gagne´, M. R.; Marks,
T. J. J. Am. Chem. Soc. 1994, 116, 10241-10254. (b) Gagne´, M. R.; Stern,
C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275-294. (c) Gagne´, M.
R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108-4109.
(3) (a) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757-1771. (b)
Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 9295-9306. (c) Li, Y.;
Marks, T. J. Organometallics 1996, 15, 3370-3372. (d) Li, Y.; Marks, T. J.
J. Am. Chem. Soc. 1996, 118, 707-708.
(4) (a) Arredondo, V. A.; Tian, S.; McDonald, F. M.; Marks, T. J. J. Am.
Chem. Soc. 1999, 121, 3633-3639. (b) Arredondo, V. A.; McDonald, F. M.;
Marks, T. J. Organometallics 1999, 18, 1949-1960. (c) Arredondo, V. A.;
McDonald, F. M.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 4871-4872.
(5) Bond enthalpy data: (a) Nolan, S. P.; Stern, D.; Hedden, D.; Marks,
T. J. ACS Symp. Ser. 1990, 428, 159-174. (b) Nolan, S. P.; Stern, D.; Marks,
T. J. J. Am. Chem. Soc. 1989, 111, 7844-7853.
(6) AM-1 level calculations indicate that addition of methyl phosphine to
ethylene is exothermic by ∼-15 kcal/mol, while addition to acetylene is
exothermic by ∼-38 kcal/mol. We thank Dr. Albert Israel for these
calculations.
Anaerobic cyclization of primary and secondary alkynyl and
alkenyl phosphines mediated by Cp′2LnCH(TMS)2 precatalysts
(Cp′ ) η5-Me5C5; Ln ) La, Sm, Y; TMS ) Me3Si) is general in
scope (Table 1).13 Secondary phosphinoalkenes undergo cycliza-
tion to yield reasonably stable tertiary phospholanes (entries 2-4),
albeit somewhat sluggishly, presumably due to the phenyl group
bulk. A notable competing side reaction is noncatalytic intramo-
(7) (a) Laurenco, C.; Villien, L.; Kaufmann, G. Tetrahedron 1984, 40,
2731-2740. (b) MacDiarmid, J. E.; Quin. L. D. J. Org. Chem. 1981, 46,
1451-1456. (c) Chen, C. H.; Brighty, K. E.; Michaels, F. M. J. Org. Chem.
1981, 46, 361-367. (d) Awerbouch, O.; Kashman, Y. Tetrahedron 1975, 31,
33-43. (e) Collins, D. J.; Rowley, L. E.; Swan, J. M. Aust. J. Chem. 1974,
27, 815-830.
(11) Syntheses of primary and secondary phosphines: (a) Guillemin, J.
C.; Savignac, P.; Denis, J. M. Inorg. Chem. 1991, 30, 2170-2173. (b) Cabioch,
J. L.; Denis, J. M. J. Organomet. Chem. 1989, 377, 227-233. (c) Wolfsberger,
W. Chem. Zeitung 1988, 112, 379-381. (d) Kosolapoff, G. M.; Maeir, L.
Organic Phosphorus Compounds; Wiley-Interscience: New York, 1972; Vol.
1, pp 1-287.
(8) (a) Burk, M. J.; Gross, M. F.; Martinez, J. P. J. Am. Chem. Soc. 1995,
117, 9375-9376. (b) Burk, M. J.; Harper, G. P.; Kalberg, C. S. J. Am. Chem.
Soc. 1995, 117, 4423-4424. (c) Burk, M. J.; Feaster, J. E.; Nugent, W. A.;
Harlow, R. L. J. Am. Chem. Soc. 1993, 115, 10125-10138.
(12) (a) Na/NH3: ref 11c. (b) Li/THF: Chou, T.-S.; Yuan, J.-J.; Tsao, C.-
H. J. Chem. Res. (S), 1985, 18-19. (c) Li and Na cleavage methods:
Budzelaar, P. H. M.; Doorn, J. A.; Meijboom, N. Recl. TraV. Chim. Pays-
Bas 1991, 110, 420-432.
(9) Preliminary observations: Giardello, M. A.; King, W. A.; Nolan, S.
P.; Porchia, M.; Sishta, C.; Marks, T. J. In Energetics of Organometallic
Species; Marthinho Simoes, J. A., Ed.; Kluwer: Dordrecht, 1992; pp 35-51.
(10) Douglass, M. R.; Marks, T. J. Communicated in part at the 217th
National Meeting of the American Chemical Society, Anaheim, CA, March
1999; abstract INOR 375.
(13) Details of the synthetic and catalytic procedures, as well as charac-
terization data, can be found in the Supporting Information.
(14) Ashby, E. C.; Prather, J. J. Am. Chem. Soc. 1966, 88, 729-733. (b)
Reference 11a.
(15) (a) Delamarche, I.; Mosset, P. J. Org. Chem. 1994, 59, 5453-5457.
(b) Bhattacharya, A. K.; Thyagarajan, G. Chem. ReV. 1981, 81, 415-430.
10.1021/ja993633q CCC: $19.00 © 2000 American Chemical Society
Published on Web 02/09/2000