858
compounds should shed light on the mechanism of action of the tunicamycins and help refine our initial
choice of scaffold structure.
References
1. For previous work in this area, see: Sofia, M. J.; Hunter, R.; Chan, T. Y.; Vaughan, A.; Dulina, R.; Wang, J.; Gange, D. J.
Org. Chem. 1998, 63, 2802–2803.
2. Sofia, M. J. Med. Chem. Res. 1998, 8, 362–378.
3. Takatsuki, A.; Arima, K.; Tamura, G. J. Antibiotics 1971, 24, 215–223.
4. Takatsuki, A.; Kawamura, K.; Okina, M.; Kodama, Y.; Ito, T.; Tamura, G. Agric. Biol. Chem. 1977, 41, 2307–2310.
5. For reviews, see: (a) Elbein, A. Trends Biochem. Sci. 1981, 219–221. (b) Tunicamycin; Tamura, G., Ed.; Japan Scientific
Press: Tokyo, Japan, 1982. (c) Echardt, K. J. Nat. Prod. 1983, 46, 544–550.
6. Brandish, P. E.; Kimura, K. I.; Inukai, M.; Southgate, R.; Lonsdale, J. T.; Bugg, T. D. Antimicrob. Agents Chemother. 1996,
40, 1640–1644.
7. Heifetz, A.; Keenan, R. W.; Elbein, A. D. Biochem. 1979, 18, 2186–2192.
8. For a total synthesis, see: (a) Suami, T. In Mycotoxins and Phycotoxins; Steyn, P. S.; Vieggaar, R., Eds.; Elsevier Science:
Amsterdam, The Netherlands, 1985. (b) Danishefsky, S.; Barbachyn, M. J. Am. Chem. Soc. 1985, 107, 7761–7762. (c)
Myers, A. G.; Gin, D. Y.; Rogers, D. H. J. Am. Chem. Soc. 1994, 116, 4697–4718. (d) Myers, A. G.; Gin, D. Y.; Rogers,
D. H. J. Am. Chem. Soc. 1993, 115, 2036–2038. For biological evaluation of homologues and degradation products, see:
(e) Duksin, D.; Mahoney, W. C. J. Biol.Chem. 1982, 257, 3105–3109. (f) Hashim, O. H.; Cushley, W. Biochim. Biophys.
Acta 1987, 923, 362–370. (g) Sarabia-García, F.; Lópes-Herrera, F. J. Tetrahedron 1996, 52, 4757–4768. For synthesis and
evaluation of analogues, see: (h) Komimato, K.; Ogawa, S.; Suami, T. Carbohydr. Res. 1988, 174, 360–368.
9. (a) Paulsen, H. Angew. Chem., Int. Ed. Engl. 1990, 29, 823–938. (b) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93,
1503–1531.
10. (a) Crich, D.; Sun, S. J. Org. Chem. 1996, 61, 4506–4507. (b) Crich, D.; Sun, S. J. Org. Chem. 1997, 62, 1198–1199.
11. Analytical data for 6: 1H NMR (300 MHz, CDCl3): δ 7.55–7.20 (m, 20H), 5.64 (1H, s), 4.82 (1H, d, J=12 Hz), 4.66 (1H, d,
J=12 Hz), 4.58 (2H, d, J=1.8 Hz), 4.50 (1H, br), 4.39 (1H, dd (br), J=1.2, 3 Hz), 4.34–4.20 (3H, m), 4.10 (1H, td, J=4.5, 9, 9
Hz), 3.76 (1H, t, J=9.9 Hz). 13C NMR (75.4 MHz, CDCl3): δ 141.5, 138.2, 137.3, 137.2, 131.6, 129.4, 129.0, 128.3, 128.2,
127.9, 127.8, 127.6, 126.0, 124.3, 101.6, 97.6, 78.0, 76.2, 73.5, 73.2, 72.8, 70.0, 68.2. MS (ES) m/z obs. 574 [M+NH4+].
1
12. Analytical data for 13: H NMR (300 MHz, CDCl3): δ 7.79 (1H, d, J=8.1 Hz), 7.40–7.20 (15H, m), 5.89 (1H, d, J=3.3
Hz), 5.66 (1H, d, J=8.1 Hz), 5.38 (2H, dd, Japp=9.9, 13.2 Hz), 4.98 (1H, d, J=6.9 Hz), 4.87 (1H, d, J=6.9 Hz), 4.83 (2H, m),
4.68–4.55 (5H, m), 4.45 (1H, t, J=3.3 Hz), 4.36 (1H, t, J=5.1 Hz), 4.22 (1H, d, J=6.0 Hz), 3.97 (1H, d (br), J=12.0 Hz),
3.74 (1H, dd (br), J=3.0, 12.0 Hz), 3.11 (1H, br). 13C NMR (75.4 MHz, CDCl3): δ 162.7, 150.8, 139.7, 137.6, 137.1, 128.4,
128.3, 128.2, 127.8, 127.6, 127.5, 127.5, 127.4, 101.5, 94.4, 94.2, 90.5, 82.8, 78.0, 73.0, 72.1, 69.9, 69.7, 60.7. MS (ES) m/z
obs. 622 [M+NH4+].
13. The determination of the stereochemistry of the new glycosidic linkage in 14 was hampered by severe overlap in NMR
1
spectra. Removal of all protective groups in 14 (H2, Pd/C, 1 atm) afforded 22, for which the H-coupled 13C NMR was
recorded in CD3OD (75.4 MHz). The 13C resonance of the mannosyl anomeric carbon (101.7 ppm) showed JH–C=159 Hz,
characteristic of β-mannosides: Bock, K.; Pedersen, C. J. Chem. Soc., Perkin Trans. 2 1974, 293–297. The β:α selectivity
of this glycosylation (1.8:1) is lower than the selectivities generally obtained with Crich’s procedure (Ref. 10) and may be
associated with particular stereoelectronic characteristics of the uridyl acceptor, since the mannosyl donor has been shown
to afford high β/α selectivities with primary glycosyl acceptors (Ref. 10b).
14. Analytical data for 17: 1H NMR (300 MHz, CDCl3): δ 7.48 (1H, d, J=8.4 Hz), 7.4–7.2 (25H, m), 5.96 (1H, d, J=2.4 Hz),
5.50 (1H, d, J=8.1 Hz), 5.41 (1H, d, J=9.9 Hz), 5.36 (1H, d, J=9.9 Hz), 4.99 (1H, d, J=6.9 Hz), 4.9–4.8 (4H, m), 4.7–4.5
(9H, m), 4.4–4.3 (5H, m), 4.22 (1H, dd, J=2.7, 11.4 Hz), 3.9–3.8 (3H, m), 3.5–3.4 (3H, m), 3.32 (1H, dd, J=2.7, 9.3 Hz).
13C NMR (75.4 MHz, CDCl3): δ 162.3, 150.7, 138.4, 138.1, 137.8, 137.2, 128.7, 128.4, 128.3, 128.2, 127.9, 127.8, 127.8,
127.7, 127.7, 127.6, 127.5, 101.6, 101.4, 94.3, 89.9, 81.6, 80.8, 78.1, 76.3, 74.5, 74.2, 73.0, 72.2, 71.6, 70.2, 69.9, 69.9, 67.7,
67.5, 51.5. MS (ES) m/z obs. 989 [M+NH4+].