4.2 Potentiometric pH titrations
Inagaki, Y. Kidani and J. Reedijk, Inorg. Chem., 1992, 31, 4656–4661;
(e) M. J. Bloemink, J. M. J. Pe´rez, R. J. Heetebrij and J. Reedijk, J. Biol.
Inorg. Chem., 1999, 4, 554–567.
5 (a) N. Farrell, Met. Ions Biol. Syst., 1996, 32, 603–639; (b) M. J.
Bloemink and J. Reedijk, Met. Ions Biol. Syst., 1996, 32, 641–685;
(c) G. Natile and M. Coluccia, Met. Ions Biol. Syst., 2004, 42, 209–250;
(d) N. Farrell, Met. Ions Biol. Syst., 2004, 42, 251–296.
6 M. M. Kawasaki and J. A. Walmsley, J. Biomol. Struct. Dyn., 1999, 17,
561–566.
7 (a) T. R. Krugh, E. S. Mooberry and Y.-C. C. Chiao, Biochemistry,
1977, 16, 740–747; (b) Y.-C. C. Chiao and T. R. Krugh, Biochemistry,
1977, 16, 747–755.
The pH titrations were carried out with a Metrohm E536
potentiograph connected to a Metrohm E665 dosimat and a
Metrohm 6.0253.100 Aquatrode-plus combined double-junction
macro glass electrode. This equipment was calibrated with
buffer solutions (pH 4, 7, 9; all based on the NBS scale,
now U.S. National Institute of Science and Technology, NIST)
obtained from Metrohm AG, Herisau, Switzerland. The acidity
constants determined at I = 0.1 M (NaNO3) and 25 ◦C are
so-called practical, mixed or Brønsted constants13,30 which may
be converted into the corresponding concentration constants by
subtracting 0.02 from the measured and listed pKa values.30 The
ionic product of water (KW) and the conversion term mentioned
do not enter into the calculations because the differences in NaOH
consumption between solutions with and without ligand (see
below) are evaluated.
8 A. Mazumder, H. Uchida, N. Neamati, S. Sunder, M. Jaworska-
Maslanka, E. Wickstrom, F. Zeng, R. A. Jones, R. F. Mandes, H. K.
Chenault and Y. Pommier, Mol. Pharmacol., 1997, 51, 567–575.
9 M. Christen, B. Christen, M. Folcher, A. Schauerte and U. Jenal, J. Biol.
Chem., 2005, 280, 30829–30837.
10 D. Chen and J. T. Patton, RNA, 2000, 6, 1455–1467.
11 R. K. O. Sigel and A. M. Pyle, Met. Ions Biol. Syst., 2003, 40, 477–512.
12 R. K. O. Sigel, Eur. J. Inorg. Chem., 2005, 2281–2292.
13 B. Knobloch, D. Suliga, A. Okruszek and R. K. O. Sigel, Chem. Eur. J.,
2005, 11, 4163–4170.
14 K. Aoki, Met. Ions Biol. Syst., 1996, 32, 91–134.
4.3 Determination of the acidity constants
15 (a) D. J. Klein, P. B. Moore and T. A. Steitz, RNA, 2004, 10, 1366–1379;
(b) A. M. Pyle, J. Biol. Inorg. Chem., 2002, 7, 679–690; (c) P. Auffinger
and E. Westhof, J. Mol. Biol., 2000, 300, 1113–1131; (d) H. Robinson,
Y.-G. Gao, R. Sanishvili, A. Joachimiak and A. H.-J. Wang, Nucleic
Acids Res., 2000, 28, 1760–1766; (e) M. Soler-Lopez, L. Malinina and
J. A. Subirana, J. Biol. Chem., 2000, 275, 23034–23044; (f) J. B. Murray,
D. P. Terwey, L. Maloney, A. Karpeisky, N. Usman, L. Beigelman and
W. G. Scott, Cell, 1998, 92, 665–673; (g) C. C. Correll, B. Freeborn,
P. B. Moore and T. A. Steitz, Cell, 1997, 91, 705–712; (h) J. H. Cate,
R. L. Hanna and J. A. Doudna, Nat. Struct. Biol., 1997, 4, 553–558;
(i) J. H. Cate and J. A. Doudna, Structure, 1996, 4, 1221–1229; (j) H. W.
Pley, K. M. Flaherty and D. B. McKay, Nature, 1994, 372, 68–74.
16 (a) R. K. O. Sigel and B. Lippert, Chem. Commun., 1999, 2167–2168;
(b) R. K. O. Sigel, E. Freisinger and B. Lippert, J. Biol. Inorg. Chem.,
2000, 5, 287–299; (c) H. Sigel and R. Griesser, Chem. Soc. Rev., 2005,
34, 875–900.
The acidity constants KHH [d(pGpG)] , KHH[d(pGpG)], KHd(pGpG), and KdH(pGpG
–H)
2
of H2[d(pGpG)]− [eqn (3–6)] were determined by titrating aqueous
solutions (30 mL) of HNO3 (0.5 mM) (25 ◦C; I = 0.1 M, NaNO3)
under N2 with NaOH (up to 3.5 mL, 0.02 M) in the presence and
absence of d(pGpG)3− (0.15 mM). The experimental data were
evaluated with a curve-fitting procedure using a Newton–Gauss
non-linear least-squares program by employing every 0.1 pH unit
the difference in NaOH consumption between the two mentioned
titrations, i.e., with and without ligand. The acidity constants
of H2[d(pGpG)]− were calculated in the pH range 3.6 to 10.2,
corresponding to 81% neutralization (initial) for the equilibrium
H2[d(pGpG)]−/H[d(pGpG)]2− and about 50% (final) for d(pGpG–
H)4−/d(pGpG–2H)5−. These neutralization degrees explain why
the error limits of the first and the last acidity constant are
17 (a) A. Kanavarioti, J. Org. Chem., 1998, 63, 6830–6838; (b) D. V.
Bugreev, E. L. Vasyutina, V. N. Buneva, Y. Yasui, M. Nishizawa, T.
Andoh and G. A. Nevinsky, FEBS Lett., 1997, 407, 18–20; (c) T. Ito
and M. Saito, Radiat. Phys. Chem., 1991, 37, 681–690.
relatively large. The final results for KHH [d(pGpG)], KHH[d(pGpG)], KHd(pGpG)
18 (a) IUPAC Stability Constants Database, Release 5, Version 5.16,
(compiled by L. D. Pettit and H. K. J. Powell), Academic Software,
Timble, Otley, West Yorkshire, UK, 2001; (b) NIST Critically Selected
Stability Constants of Metal Complexes, Reference Database 46, Version
6.0, (data collected and selected by R. M. Smith and A. E. Martell),
U. S. Department of Commerce, National Institute of Standards and
Technology, Gaithersburg, MD, 2001; (c) Joint Expert Speciation Sys-
tem (JESS), Version 6.4, (joint venture by K. Murray and P. M. May),
Division of Water Technology, CSIR, Pretoria, South Africa, and
School of Mathematical and Physical Sciences, Murdoch University,
Murdoch, Western Australia, 2001.
19 (a) R. Savoie, H. Klump and W. L. Peticolas, Biopolymers, 1978, 17,
1335–1345; (b) R. Ghana, C. Walss and J. A. Walmsley, J. Biomol.
Struct. Dyn., 1996, 14, 101–110.
20 J. A. Walmsley, M. L. Schneider, P. J. Farmer, J. R. Cave, C. R. Toth
and R. M. Wilson, J. Biomol. Struct. Dyn., 1992, 10, 619–638.
21 (a) K. H. Scheller, F. Hofstetter, P. R. Mitchell, B. Prijs and H. Sigel,
J. Am. Chem. Soc., 1981, 103, 247–260; (b) N. A. Corfu` and H. Sigel,
Eur. J. Biochem., 1991, 199, 659–669.
2
and KHd(pGpG H) are the averages of the values from four independent
–
pairs of titrations.
Acknowledgements
Financial support from the Swiss National Science Foundation
(SNF-Fo¨rderungsprofessur to R.K.O.S., PP002-68733/1), the
Universities of Zu¨rich (R.K.O.S.) and Basel (H.S.), and within
the COST D20 programme from the Swiss State Secretariat for
Education and Research (H.S.) is gratefully acknowledged, as
is the competent technical assistance of Mrs Astrid Sigel in the
preparation of the manuscript.
References
22 K. J. Neurohr and H. H. Mantsch, Can. J. Chem., 1979, 57, 1986–1994.
23 H. Sigel, S. S. Massoud and N. A. Corfu`, J. Am. Chem. Soc., 1994, 116,
2958–2971.
1 Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug,
ed. B. Lippert, VHCA, Zu¨rich, 1999, Wiley-VCH, Weinheim, 1999, pp.
1–563.
2 J. P. Whitehead and S. J. Lippard, Met. Ions Biol. Syst., 1996, 32, 687–
726.
3 H. T. Chifotides, K. M. Koshlap, L. M. Perez and K. R. Dunbar, J. Am.
Chem. Soc., 2003, 125, 10714–10724.
4 (a) S. J. Berners-Price, J. D. Ranford and P. J. Sadler, Inorg. Chem., 1994,
33, 5842–5846; (b) E. L. M. Lempers, M. J. Bloemink, J. Brouwer, Y.
Kidani and J. Reedijk, J. Inorg. Biochem., 1990, 40, 23–35; (c) C. J.
van Garderen, M. J. Bloemink, E. Richardson and J. Reedijk, J. Inorg.
Biochem., 1991, 42, 199–205; (d) M. J. Bloemink, R. J. Heetebrij, K.
24 H. Sigel, B. Song, G. Oswald and B. Lippert, Chem. Eur. J., 1998, 4,
1053–1060.
25 C. P. Da Costa and H. Sigel, Inorg. Chem., 2003, 42, 3475–3482.
26 N. Ogasawara and Y. Inoue, J. Am. Chem. Soc., 1976, 98, 7048–7053.
27 S. S. Massoud and H. Sigel, Inorg. Chem., 1988, 27, 1447–1453.
28 B. Song and H. Sigel, Inorg. Chem., 1998, 37, 2066–2069.
29 E. M. Bianchi, Comparison of the Stabilities and Solution Structures
of Metal Ion Complexes Formed with 5ꢀ-Di- and 5ꢀ-Triphosphates of
Purine Nucleosides, PhD Thesis, University of Basel, Logos Verlag,
Berlin, 2003, pp. 1–216.
This journal is
The Royal Society of Chemistry 2006
Org. Biomol. Chem., 2006, 4, 1085–1090 | 1089
©