4472
D. P. Kamat et al. / Tetrahedron Letters 53 (2012) 4469–4472
is that it provides an efficient, cost-effective, easy to handle, and
O
OH
environmentally benign route, with the use of iodine as a mild and
safer catalyst. The reaction is important from the green chemistry
point of view also because hydroarylation exhibits perfect atom
economy.
Path
A
Path
B
OH
+
Acknowledgment
HO
O
D.P.K is thankful to UGC for the award of Junior Research
Fellowship.
O
HO
O
Supplementary data
( 4 )
( 5 )
Supplementary data associated with this article can be found, in the
hydroarylation
lactonisation
3a
References and notes
Scheme 2. Possible pathways leading to the formation of dihydrocoumarin (3a).
1. Togo, H.; Iida, S. Synlett 2006, 2159.
2. Jereb, M.; Vrazic, D.; Zupan, M. Tetrahedron 2011, 67, 1355.
3. a) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. J. Org. Chem. 2009, 74, 8369;
b) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. Chem. Eur. J. 2012, 18, 5460.
4. Suresh, R. C.; Johnson, J. D.; Menne, T. Contact Dermatitis 1996, 34, 423.
5. Jenner, P. M.; Hagan, E. C.; Taylor, J. M.; Cook, E. L.; Fitzhug, O. G. Food Cosmet.
Toxicol. 1964, 2, 327.
6. Maruzella, J. C.; Brancis, E. Soap, Perfumery and Cosmetics 1961, 34, 743.
7. (a) Donnelly, D. M. X.; Boland, G. M. Nat. Prod. Rep. 1995, 12, 321; (b) Donnelly,
D. M. X.; Boland, G. M. In The Flavonoids, Advances in Research Since 1986;
Harborne, J. B., Ed.; Chapman and Hall: London, 1993; p 239; (c) Wagner, H.;
Seligmann, O.; Chari, M. V.; Wollenweber, E.; Dietz, V.; Donnelly, D. M. X.;
Donnelly, M. J. M.; O’Donnell, B. Tetrahedron Lett. 1979, 4269.
H
I
H
O
O
I
O
O
-H2O
Ph
O
I
I
Ph
8. Iinuma, M.; Tanaka, T.; Mizuno, M.; Katsuzaki, T.; Ogawa, H. Chem. Pharm. Bull.
1813, 1989, 37.
9. Takechi, M.; Tanaka, Y.; Takehara, M.; Nonaka, G.-I.; Nishioka, I. Phytochemistry
1985, 24, 2245.
10. Hsu, F. L.; Nonaka, G.-I.; Nishioka, I. Chem. Pharm. Bull. 1985, 33, 3142.
11. Arustamyan, Z. S.; Balayan, R. S.; Markaryan, R. E.; Mkryan, G. G.; Asatryan, T.
O.; Markaryan, E. A. Hayastani Kimiakan Handes 2011, 64(2), 257.
12. (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633; (b) Ritleng,
V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731; (c) Li, K.; Foresee, L. N.;
Tunge, J. A. J. Org. Chem. 2005, 70, 2881.
I-
O+
Ph
O
O
O
I
H
Ph
Scheme 3. The probable mechanism.
13. (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley and Sons:
New York, 1994; (b) McGuire, M. A.; Shilcrat, S. C.; Sorenson, E. Tetrahedron
Lett. 1999, 40, 3293.
12c
of a catalytic amount of TiCl4
to give dihydrocoumarin via
hydroarylation followed by lactonization. (path B, Scheme 2).
To study the mechanism in the present case, (E)-2-naphthyl cin-
namate (4) was subjected to the standardized reaction condition.
The dihydrocoumarin (3a) was obtained along with trace amounts
of cinnamic acid and b-naphthol. Similarly, methyl ether of b-
naphthol was heated with cinnamic acid in the presence of
20 mol % of iodine at 120–160 °C for 3 h to evaluate the possibility
of direct hydroarylation. However, we did not observe any change
in the reaction mass. Thus, in the present case most likely, transe-
sterification takes place first followed by hydroarylation (path A,
Scheme 2). The probable mechanism of iodine catalyzed cyclocou-
pling is depicted in Scheme 3.
14. (a) Johnson, K. M. Tetrahedron 1968, 24, 5595; (b) Fillion, E.; Dumas, A. M.;
Kuropatwa, B. A.; Malhotra, N. R.; Sitler, T. C. J. Org. Chem. 2006, 71, 409.
15. Barluenga, J.; Andina, F.; Aznar, F. Org. Lett. 2006, 8, 2703.
16. Jagdale, A. R.; Sudalai, A. Tetrahedron Lett. 2007, 48, 4895.
17. Piao, C.-R.; Zhao, Y.-L.; Han, X.-D.; Liu, Q. J. Org. Chem. 2008, 73, 2264.
18. Alden-Danforth, E.; Scerba, M. T.; Lectka, T. Org. Lett. 2008, 10, 4951.
19. Häser, K.; Wenk, H. H.; Schwab, W. J. Agric. Food Chem. 2006, 54, 6236.
20. Zhang, Z.; Ma, Y.; Zhao, Y. Synlett 2008, 1091.
21. Bennardi, D. O.; Ruiz, D. M.; Romanelli, G. P.; Baronetti, G. T.; Thomas, H. J.;
Autino, J. C. Lett. Org. Chem. 2008, 5, 607.
22. Jeon, J.-H.; Yang, D.-M.; Jun, J.-G. Bull. Korean Chem. Soc. 2011, 32, 65.
23. General procedure for the synthesis of dihydrocoumarins: Iodine (0.13 mmol) was
added into a mixture of phenol (0.69 mmol) and cinnamic acid (0.69 mmol)
under an air atmosphere and the mixture was neat heated at 120–130 °C for a
period of time (1–4 h). Following completion of the reaction as monitored by
TLC, the reaction mixture was cooled, diluted with ethyl acetate, washed with
aqueous sodium thiosulphate solution and dried over anhydrous sodium
sulphate. The solvent was removed under vacuum to provide the crude
products. Further purification was done by column chromatography on silica
gel with hexanes/ethyl acetate (4:1) as an eluent.
Inconclusion, wehavedevelopeda simple, convenient, metaland
solvent-free process for the one pot synthesis of 4-aryl-3,4-
dihydrocoumarins by using inexpensive and readily available start-
ing materials, in good yields. The main feature of the present method