618
R. A. Bunce and B. Nammalwar
Vol 48
120ꢀC. Workup and purification afforded 10a. The yield for
each run is given in Figure 2.
119.0, 118.9, 118.4, 115.9, 111.2, 109.4, 58.3, 55.97, 55.94,
46.7; ms: m/z 283 (Mþ). Anal. Calcd. for C17H17NO3: C,
72.08; H, 6.01; N, 4.95. Found: C, 72.11; H, 6.02; N, 4.91.
(6)-2-(1,3-Benzodioxol-5-yl)-2,3,dihydro-4(1H)-quinolinone
(10e). Reductive cyclization of 423 mg (1.68 mmol) of 6e and
375 mg (6.72 mmol) of iron gave 374 mg (83%) of 10e as an
off-white solid, mp 128–130ꢀC (lit. [12b] mp 118–119ꢀC). IR:
Representative reductive ring closure using iron powder
in concentrated hydrochloric acid: (6)-2,3-Dihydro-2-phe-
nyl-4(1H)-quinolinone (10a). Using the procedure given for
the preparation of 7, a mixture of 500 mg (1.97 mmol) of 6a
and 10 mL of concentrated hydrochloric acid in a 100-mL two-
necked round-bottomed flask was heated to 80–85ꢀC. The heat
was briefly removed and 440 mg (7.88 mmol, 4 equiv) of iron
powder (>100 mesh) was added. [Caution! The addition was
sufficiently exothermic to boil the mixture and some frothing
occurred as the iron was added. The reaction flask should be at
least 10 times the volume of the reactants at this scale.] Heating
was resumed at 100ꢀC until thin layer chromatography indicated
the reaction was complete (ca. 30 min). Workup and purification
by flash chromatography on a 20-cm ꢁ 2-cm silica gel column
eluted with increasing concentrations of ether in hexanes gave
386 mg (88%) of 10a as a pale yellow solid, mp 149–151ꢀC (lit.
3328, 1663, 1610 cmꢂ1
;
1H-NMR: d 7.86 (d, 1H, J ¼ 7.7),
7.34 (td, 1H, J ¼ 7.7, 1.6), 6.97 (d, 1H, J ¼ 1.1), 6.89 (dd, 1H,
J ¼ 8.0, 1.6), 6.79 (overlapping d and t, 2H, J ꢃ 8.2), 6.71 (d,
1H, J ¼ 8.2), 5.98 (s, 2H), 4.65 (dd, 1H, J ¼ 13.4, 3.7), 4.49
(br s, 1H), 2.83 (dd, 1H, J ¼ 16.2, 13.4), 2.71 (dd, 1H, J ¼
16.2, 3.7); 13C-NMR: d 193.3, 151.5, 148.0, 147.6, 135.4,
134.9, 127.6, 120.1, 119.0, 118.4, 115.9, 108.5, 106.9, 101.2,
58.3, 46.6; ms: m/z 267 (Mþ). Anal. Calcd. for C16H13NO3: C,
71.91; H, 4.87; N, 5.24. Found: C, 71.92; H, 4.89; N, 5.22.
(6)-2-(2-Chlorophenyl)-2,3-dihydro-4(1H)-quinolinone
(10f). Reductive cyclization of 399 mg (1.73 mmol) of 6f and
386 mg (6.92 mmol) of iron gave 357 mg (80%) of 10f as a
[3a] mp 149–150ꢀC). IR: 3326, 1661, 1608, 1482 cmꢂ1 1H-
;
1
yellow solid, mp 126–128ꢀC. IR: 3429, 1659, 1609 cmꢂ1. H-
NMR (400 MHz): d 7.87 (dd, 1H, J ¼ 8.0, 1.5), 7.45 (dd, 2H, J
¼ 7.6, 1.5), 7.42–7.31 (complex, 4H), 6.78 (t, 1H, J ¼ 7.6), 6.71
(d, 1H, J ¼ 8.2), 4.74 (dd, 1H, J ¼ 13.8, 3.7), 4.55 (br s, 1H),
2.87 (dd, 1H, J ¼ 16.2, 13.8), 2.77 (dm, 1H, J ¼ 16.2); 13C-
NMR (100 MHz): d 193.3, 151.5, 141.0, 135.4, 128.9, 128.4,
127.6, 126.6, 119.0, 118.4, 115.9, 58.4, 46.4; ms: m/z 223 (Mþ).
(6)-2,3-Dihydro-2-(4-methylphenyl)-4(1H)-quinolinone
(10b). Reductive cyclization of 415 mg (1.87 mmol) of 6b
with 418 mg (7.48 mmol) of iron gave 378 mg (85%) of 10b
as an off-white solid, mp 147–149ꢀC (lit. [8c] mp 148–149ꢀC).
NMR: d 7.88 (d, 1H, J ¼ 7.7), 7.68 (dd, 1H, J ¼ 7.1, 1.6),
7.44–7.23 (complex, 4H), 6.81 (t, 1H, J ¼ 7.1), 6.74 (d, 1H, J
¼ 8.2), 5.27 (dd, 1H, J ¼ 12.1, 3.7), 4.52 (br s, 1H), 2.96
(ddd, 1H, J ¼ 16.2, 3.7, 1.5), 2.78 (dd, 1H, J ¼ 16.2, 12.1);
13C-NMR: d 192.7, 151.5, 138.3, 135.4, 132.8, 130.0, 129.3,
127.6, 127.5, 127.4, 119.1, 118.7, 116.0, 54.2, 44.0; ms: m/z
257, 259 (ca. 3:1, Mþ). Anal. Calcd. for C15H12ClNO: C,
69.90; H, 4.66; N, 5.44. Found: C, 69.97; H, 4.69; N, 5.39.
Cyclization of 8a using concentrated hydrochloric acid:
(6)-2,3-Dihydro-2-phenyl-4(1H)-quinolinone (10a). Using the
procedure for the conversion of 6a to 10a, a mixture of 150
mg (0.67 mmol) of 8a and 6 mL of concentrated hydrochloric
acid was treated at 85ꢀC with 150 mg (2.69 mmol, 4 equiv) of
iron powder and then heated at 100ꢀC for 30 min. Workup and
purification by preparative thin layer chromatography eluted
with 30% ether in hexanes yielded 128 mg (85%) of 10a as a
pale yellow solid. The physical properties and spectral data
matched those reported above. The cyclization of 8a to 10a
can also be carried out in the same fashion without iron.
IR: 3331, 1655, 1608 cmꢂ1
;
1H-NMR: d 7.87 (d, 1H, J ¼
7.7), 7.35 (d, 2H, J ¼ 7.7), 7.34 (obscured signal, 1H), 7.21
(d, 2H, J ¼ 7.7), 6.79 (t, 1H, J ¼ 7.7), 6.70 (d, 1H, J ¼ 8.2),
4.72 (dd, 1H, J ¼ 13.7, 3.7), 4.47 (br s, 1H), 2.88 (dd, 1H, J
¼ 16.2, 13.7), 2.75 (dd, 1H, J ¼ 16.2, 3.7), 2.37 (s, 3H); 13C-
NMR: d 193.4, 151.6, 138.3, 138.0, 135.3, 129.6, 127.6,
126.5, 119.0, 118.4, 115.9, 58.2, 46.5, 21.1; ms: m/z 237
(Mþ). Anal. Calcd. for C16H15NO: C, 81.01; H, 6.33; N, 5.91.
Found: 80.94; H, 6.32; N, 5.85.
(6)-2,3-Dihydro-2-(4-methoxyphenyl)-4(1H)-quinolinone
(10c). Reductive cyclization of 415 mg (1.76 mmol) of 6c
with 393 mg (7.04 mmol) of iron gave 365 mg (82%) of 10c
as a yellow solid, mp 147–148ꢀC (lit. [8c] mp 147ꢀC). IR:
Acknowledgment. B. N. thanks Oklahoma State University for
a research assistantship and the Department of Chemistry for an
O. C. Dermer Scholarship. Funding for the 300-MHz NMR spec-
trometer of the Oklahoma Statewide Shared NMR Facility was
provided by NSF (BIR-9512269), the Oklahoma State Regents
for Higher Education, the W. M. Keck Foundation, and Conoco,
Inc. Finally, the authors thank the OSU College of Arts and Sci-
ences for funds to upgrade their departmental FT-IR and GC-MS
instruments.
3329, 2836, 1660, 1608 cmꢂ1 1H-NMR (400 MHz): d 7.87
;
(dd, 1H, J ¼ 8.0, 1.6), 7.37 (d, 2H, J ¼ 8.6), 7.33 (td, 1H, J
¼ 7.7, 1.2), 6.92 (d, 2H, J ¼ 8.6), 6.78 (t, 1H, J ¼ 7.7), 6.70
(d, 1H, J ¼ 8.2), 4.69 (dd, 1H, J ¼ 13.8, 3.7), 4.48 (br s, 1H),
3.82 (s, 3H), 2.87 (dd, 1H, J ¼ 16.2, 13.8), 2.74 (dd, 1H, J ¼
16.2, 3.7); 13C-NMR (100 MHz): d 193.5, 159.6, 151.6, 135.3,
133.0, 127.8, 127.6, 119.0, 118.3, 115.9, 114.2, 57.9, 55.3,
46.5; ms: m/z 253 (Mþ). Anal. Calcd. for C16H15NO2: C,
75.89; H, 5.93; N, 5.53. Found: C, 75.83; H, 5.94; N, 5.49.
(6)-2,3-Dihydro-2-(3,4-dimethoxyphenyl)-4(1H)-quinoli-
none (10d). Reductive cyclization of 426 mg (1.59 mmol) of
6d and 355 mg (6.36 mmol) of iron gave 326 mg (72%) of
10d as a white solid, mp 145–147ꢀC. IR: 3348, 2836, 1660,
REFERENCES AND NOTES
[1] (a) Bunce, R. A.; Herron, D. M.; Ackerman, M. L. J Org
Chem 2000, 65, 2847; (b) Bunce, R. A.; Randall, M. H.; Applegate,
K. G. Org Prep Proced Int 2002, 34, 493; (c) Bunce, R. A.; Nammal-
war, B. J Heterocycl Chem 2009, 46, 172; (d) Bunce, R. A.; Nammal-
war, B. J Heterocycl Chem 2009, 46, 854.
1
1611 cmꢂ1. H-NMR: d 7.87 (d, 1H, J ¼ 7.7), 7.35 (t, 1H, J
¼ 7.1), 7.00 (s, 1H), 6.99 (d, 1H, J ¼ 7.7), 6.87 (d, 1H, J ¼
8.2), 6.80 (t, 1H, J ¼ 7.7), 6.72 (d, 1H, J ¼ 8.2), 4.70 (dd,
1H, J ¼ 13.7, 3.7), 4.51 (br s, 1H), 3.91 (s, 3H), 3.90 (s, 3H),
2.88 (dd, 1H, J ¼ 15.9, 13.7), 2.75 (dd, 1H, J ¼ 15.9, 3.7);
13C-NMR: d 193.4, 151.5, 149.3, 149.0, 135.3, 133.5, 127.6,
[2] Ibrahim, E.-S.; Montgomerie, A. M.; Sneddon, A. H.; Proc-
tor, G. R.; Green, B. Eur J Med Chem 1988, 23, 183.
[3] (a) Xia, Y.; Yang, Z.-Y.; Xia, P.; Bastow, K. F.; Tachibana,
Y.; Kuo, S.-C.; Hamel, E.; Hackl, T.; Lee, K.-H. J Med Chem 1998,
41, 1155; (b) Shintani, R.; Yamagami, T.; Kimura, T.; Hayashi, T.
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet