4
3. (a) Gallou, I. Org. Prep. Proced. Int., 2007, 39, 355-383; (b) Guan,
A. Y.; Liu, C. L.; Yang, X. P.; Dekeyser, M. Chem. Rev., 2014,
114, 7079-7107.
4. (a) Choi, S. J.; Lee, J. H.; Lee, Y. H.; Hwang, D. Y.; Kim, H. D. J.
Appl. Polym. Sci., 2011, 121, 3516-3524; (b) Pereira, E. I.;
Minussi, F. B.; da Cruz, C. C.; Bernardi, A. C.; Ribeiro, C. J.
Agric. Food Chem., 2012, 60, 5267-5272.
5. Wu, P.; Hu, Y. Med. Chem. Commun., 2012, 3, 1337-1355.
6. Musumeci, F.; Radi, M.; Brullo, C.; Schenone, S. J. Med. Chem.,
2012, 55, 10797-10822.
7. Rami, H. K.; Thompson, M.; Stemp, G.; Fell, S.; Jerman, J. C.;
Stevens, A. J.; Smart, D.; Sargent, B.; Sanderson, D.; Randall, A.
D.; Gunthorpe, M. J.; Davis, J. B. Bioorg. Med. Chem. Lett., 2006,
16, 3287-3291.
intermediate 18 is converted to 19, with tert-butoxy group as
the leaving group, leading to the formation of isocyanate 13.
Finally, the other equivalent of amine reacts with isocyanate 13
to form urea 12. In path B, the intermediate 18 decomposes into
tert-butanol, carbon dioxide, DABCO and 7, which then converts
to tert-butanol and isocyanate 13, followed by addition of the
other amine to from 12.
N
N
O
N+
O
N+
-O
+
DABCO
(Boc)2O
O
-O
O
-O
O
O
O
+
R
NH2
8. Regan, J.; Breitfelder, S.; Cirillo, P.; Gilmore, T.; Graham, A. G.;
Hickey, E.; Klaus, B.; Madwed, J.; Moriak, M.; Moss, N.;
Pargellis, C.; Pav, S.; Proto, A. J. Med. Chem., 2002, 45, 2994-
3008.
17
16
9. For recent articles on urea catalysis, see: (a) Hardman, A. M.; So,
S. S.; Mattson, A. E. Org. Biomol. Chem., 2013, 11, 5793-5797; (b)
So, S. S.; Auvil, T. J.; Garza, V. J.; Mattson, A. E. Org. Lett.,
2012, 14, 444-447; (c) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.;
Jacobsen, E. N. Science, 2010, 327, 986-990; (d) Connon, S. J.
Synlett, 2009, 354-376; (e) Ganesh, M.; Seidel, D. J. Am. Chem.
Soc., 2008, 130, 16464-16465; (f) Robak, M. T; Trincado, M.;
Ellman, J. A. J. Am. Chem. Soc., 2007, 129, 15110-15111; (g)
Doyle, A. G.; Jacobsen, E. N. Chem. Rev., 2007, 107, 5713-5743.
10. (a) Bigi, F.; Maggi, R.; Sartori, G. Green Chem., 2000, 2, 140-148;
(b) Majer, P.; Randad, R. S. J. Org. Chem., 1994, 59, 1937-1938.
11. (a) Díaz, D. J.; Darko, A. K.; McElwee-White, L. Eur. J. Org.
Chem., 2007, 2007, 4453-4465; (b) Kumar, G. S.; Kumar, R. A.;
Kumar, P. S.; Reddy, N. V.; Kumar, K. V.; Kantam, M. L.;
Prabhakar, S.; Reddy, K. R. Chem. Commun., 2013, 49, 6686-
6688; (c) Kim, S. H.; Hong, S. H. Org. Lett., 2016, 18, 212–215.
12. (a) Wei, Y.; Liu, J.; Lin, S.; Ding, H.; Liang, F.; Zhao, B. Org.
Lett., 2010, 12, 4220-4223; (b) Huang, X.; Xu, S.; Tan, Q.; Gao,
M.; Li, M.; Xu, B. Chem. Commun., 2014, 50, 1465-1468.
13. Zhao, J.; Li, Z.; Yan, S.; Xu, S.; Wang, M.-A.; Fu, B.; Zhang, Z.
Org. Lett., 2016, 18, 1736-1739.
N
DABCO
+
N
N+
O
N+
O
+t-BuOH
-t-BuOH
HO
Path A
-O
O
-O
O
O
CO2 t-BuOH
+
+
R-NH=C=O
O
R
NH
NH
R
13
19
18
Path B
2RNH
CO2
DABCO
+
+
O
R
H
N
RNH2
+
-H+
tBuO
R
R
O
-
N
O
N
H
N
H
tBuOH
+
R-N=C=O
R
+
+H+
O
O
12
7
13
Scheme 3. The proposed mechanism to urea.
Conclusions
14. (a) Duspara, P. A.; Islam, M. S.; Lough, A. J.; Batey, R. A. J. Org.
Chem., 2012, 77, 10362–10368; (b) Katritzky, A. R.; Pleynet, D. P.
M.; Yang, B. J. Org. Chem., 1997, 62, 4155–4158.
15. Kulkarni, A. R.; Garai, S.; Thakur, G. A. J. Org. Chem. 2017, 82,
992-999.
16. (a) Gabriele, B.; Salerno, G.; Mancuso, R.; Costa, M. J. Org.
Chem., 2004, 69, 4741-4750; (b) Gabriele, B.; Mancuso, R.;
Salerno, G.; Costa, M. Chem. Commun., 2003, 486-487; (c) Zhang,
L.; Darko, A. K.; Johns, J. I.; McElwee-White, L. Eur. J. Org.
Chem., 2011, 2011, 6261-6268.
17. (a) Ion, A.; Parvulescu, V.; Jacobs, P.; Vos, D. D. Green Chem.,
2007, 9, 158-161; (b) Jiang, T.; Ma, X.; Zhou, Y.; Liang, S.;
Zhang, J.; Han, B. Green Chem., 2008, 10, 465-469; (c) Fuchter,
M. J.; Smith, C. J.; Tsang, M. W. S.; Boyer, A.; Saubern, S.; Ryan,
J. H.; Holmes, A. B. Chem. Commun., 2008, 2152-2154.
18. (a) Tang, M.-L.; Peng, P.; Liu, Z.-Y.; Zhang, J.; Yu, J.-M.; Sun, X.
Chem.-Eur. J., 2016, 22, 14535-14539; (b) Tang, M.-L.; Zhong,
C.; Liu, Z.-Y.; Peng, P.; Liu, X.-H.; Sun, X. Eur. J. Med. Chem.,
2016, 113, 63-74; (c) Xu, G.; Lv, B.; Roberge, J. Y.; Xu, B.; Du,
J.; Dong, J.; Chen, Y.; Peng, K.; Zhang, L.; Tang, X.; Feng, Y.;
Xu, M.; Fu, W.; Zhang, W.; Zhu, L.; Deng, Z.; Sheng, Z.;
Welihinda, A.; Sun, X. J. Med. Chem., 2014, 57, 1236-1251; (d)
Zhong, C.; Liu, X.-H.; Chang, J.; Yu, J.-M.; Sun, X. Bioorg. Med.
Chem. Lett., 2013, 23, 4413-4418;
In summary, we established an efficient method to prepare N, N’-
unsymmetrically substituted ureas 9 through the ammonolysis of
N-Boc protected anilines 7 with amines prompted by TBD.
Furthermore, one-pot approach, for the preparation of symmetric
N, N'-substituted ureas 12 by the diammonolysis process of
Boc2O with 2 equivalents of amines, was also achieved,
catalyzed by DABCO. The methods for the urea formation
reported in this study are convenient, practicable and efficient. It
can be applied to a broad spectrum of amine substrates under
mild conditions. Further efforts on the synthetic application of
this approach are on-going in our laboratory.
Acknowledgments
We thank the National Natural Science Foundation of China
(No. 81673297), the Shanghai Municipal Committee of Science
and Technology (No.17431902500, 17JC1400200 and
15ZR1449000). We also thank Dr. Chang-Mei Si (School of
Pharmacy, Fudan University) for helpful in preparation of
manuscript.
19. (a) Spyropoulos, C.; Kokotos, C. G. J. Org. Chem., 2014, 79,
4477-4483; (b) Kim, H.-K.; Lee, A. Tetrahedron Lett., 2016, 57,
References and notes
4890-4892; (c) Bana, P.; Lakó, Á.; Kiss, N. Z.; Béni, Z.;
Szigetvári, Á.; Kóti, J.; Túrós, G. I.; Éles, J.; Greiner, I. Org.
Process Res. Dev., 2017, 21, 611-622.
1. (a) Hili,R; Yudin, A.K. Nat. Chem. Biol., 2006, 2, 284-2877; (b)
Shin, K; Kim, H; Chang, S. Acc. Chem. Res., 2015, 48, 1040-
1052.
20. Knölker, H.-J.; Braxmeier, T.; Schlechtingen, G. Angew. Chem.,
Int. Ed., 1995, 34, 2497-2500.
21. Baidya, M.; Kobayashi, S.; Brotzel, F.; Schmidhammer, U.;
Riedle, E.; Mayr, H. Angew. Chem., Int. Ed., 2007, 46, 6176-6179.
2. For selected references see: (a) Kozikowski, A. P.; Zhang, J.; Nan,
F. J.; Petukhov, P. A.; Grajkowska, E.; Wroblewski, J. T.;
Yamamoto, T.; Bzdega, T.; Wroblewska, B.; Neale, J. H. J. Med.
Chem., 2004, 47, 1729-1738; (b) Terefenko, E. A.; Kern, J.;
Fensome, A.; Wrobel, J.; Zhu, Y.; Cohen, J.; Winneker, R.; Zhang,
Z. M.; Zhang, P. W. Bioorg. Med. Chem. Lett., 2005, 15, 3600-
3603; (c) Li, Q.; Li, T. M.; Woods, K. W.; Gu, W. Z.; Cohen, J.;
Stoll, V. S.; Galicia, T.; Hutchins, C.; Frost, D.; Rosenberg, S. H.;
Sham, H. L. Bioorg. Med. Chem. Lett., 2005, 15, 2918-2922.
Supplementary Material
Supplementary data associated with this article can be found
in the online version.