Communications to the Editor
J ournal of Medicinal Chemistry, 2000, Vol. 43, No. 21 3819
(13) Gilmer, T.; Rodriguez, M.; J ordan, S.; Crosby, R.; Alligood, K.;
Green, M.; Kimery, M.; Wagner, C.; Kinder, D.; Charifson, P.;
Hassell, A. M.; Willard, D.;Luther, M.; Rusnak, D.; Sternbach,
D. D.; Mehrotra, M.; Peel, M.; Shampine, L.; Davis, R.; Robbins,
J .; Patel, I. R.; Kassel, D.; Burkhart, W.; Moyer, M.; Bradshaw,
T.; Berman, J . Peptide inhibitors of Src SH3-SH2-phosphop-
rotein interactions. J . Biol. Chem. 1994, 269, 31711-31719.
(14) Eck, M. J .; Shoelson, S. E.; Harrison, S. C. Recognition of a high-
affinity phosphotyrosyl peptide by the Src homology-2 domain
of p561ck. Nature 1993, 362, 87-91.
(15) Waksman, G.; Kominos, D.; Robertson, S. C.; Pant, N.; Balti-
more, D.; Birge, R. B.; Cowbum, D.; Hanafusa, H.; Mayer, B. J .;
Overduin, M.; Resh, M. D.; Rios, C. B.; Silverman, L.; Kuriyan,
J . Crystal structure of the phosphotyrosine recognition domain
(SH2) of the v-src tyrosine kinase complexed with tyrosine
phosphorylated peptides. Nature 1992, 358, 646-653.
(16) Eck, M. J .; Shoelson, S. E.; Harrison, S. C. Recognition of a high
affinity phosphotyrosyl peptide by the Src homology 2 domain
of p561ck. Nature 1993, 362, 87-91.
(17) Bohacek, R. S.; McMartin, C. Definition and display of steric,
hydrophobic and hydrogen-bonding properties of ligand binding
sites in proteins using Lee and Richards accessible surface:
Validation of a high-resolution graphical tool for drug design.
J . Med. Chem. 1992, 35, 1671-1684.
(18) Burely, S. K.; Petsko, G. A. Aromatic-aromatic interaction: a
mechanism of protein structure stabilization. Science 1985, 229,
23.
determination (X-ray and NMR). Where relevant, to compare
Lck with Src, residue numbers for Src are given in parentheses.
(23) McMartin, C.; Bohacek, R. S. QXP: Powerful, rapid computer
algorithms for structure-based design. J . Comput.-Aided Mol.
Des. 1997, 11, 333-344.
(24) Lunney, E. A.; Para, K. S.; Rubin, J . R.; Humblet, C.; Fergus, J .
H.; Marks, J . S.;Sawyer, T. K. Structure-based design of a novel
series of nonpeptide ligands that bind to the pp60src SH2 domain.
J . Am. Chem. Soc. 1997, 119, 12471-12476.
(25) Lunney, E. A.; Para, K. S.; Plummer, M. S.; Prasad, J . V. N. V.;
Saltiel, A. R.; Sawyer, T.; Shahripour, A. Compounds, composi-
tions and methods for inhibiting the binding of proteins contain-
ing an SH2 domain to cognate phosphorylated proteins. WO 97/
12903, 1997.
(26) Thompson, A. S.; Humphrey, G. R.; DeMarco, A. M.; Mathre, D.
J .; Grabowski,E. J . J . Direct conversion of activated alcohols to
azides using diphenyl phosphorazidate. A practical alternative
to Mitsunobu conditions. J . Org. Chem. 1993, 58, 5886-5888.
(27) Prelog, v. V.; Ruzicka, L.; Metzler, O. Zur kenntnis des kohlen-
stoffringes. U¨ ber cis-3,4-polymethylen-cyclohexanone. Helv. Chim.
Acta 1947, 30, 1883-1895.
(28) Hauser, F. M.; Ellenberger, S. R. Regiospecific oxidation of
methyl groups in dimethylanisoles. Synthesis 1987, 723-724.
(29) Nilsson, J . L. G.; Selander, H.; Sievertsson, H.; Skanberg, I.;
Svensson, K.-G. Directive effects in the bromination of bicyclic
phenols. Acta Chem. Scand. 1971, 25, 94-100.
(30) Lynch, B. A.; Loiacono, K. A.; Tiong, C. L.; Adams, S. E.; Macneil,
I. A. A fluoresence polarization based Src-SH2 binding assay.
Anal. Biochem. 1997, 247, 77-82.
(19) Burely, S. K.; Petsko, G. A. Weakly polar interactions in proteins.
Adv. Protein Chem. 1988, 39, 125.
(20) Buchanan, J . L.; Bohacek, R. S.; Luke, G. P.; Hatada, M.; Lu,
X.; Dalgarno, D. C.; Narula; S. S.; Yuan, R.; Holt, D. A.
Structure-based design and synthesis of a novel class of Src SH2
inhibitors. Bioorg. Med. Chem. Lett. 1999, 9, 2353-2358.
(21) Tong, L.; Warren, T. C.; King, J .; Betageri, R.; Rose, J .; J akes,
S. Crystal structures of the human p561ck SH2 domain in
complex with two short phosphotyrosyl peptides at 1.0 ANG. and
1.8 ANG. resolution. J . Mol. Biol. 1996, 256, 601-610.
(22) When this work was initiated, no high-resolution crystal struc-
tures of Src SH2 were available for docking ligands which span
the entire binding site. Therefore, we used a high-resolution (1.0
Å) crystal structure of Lck SH2 complexed with the phospho-
peptide pYEEI. To the extent that the active site of Lck SH2 is
identical to that of Src SH2, we have successfully exploited this
model in the design of highly potent Src SH2 inhibitors and in
the accurate prediction of their binding mode prior to structural
(31) Violette, S. M.; Shakespeare, W. C.; Bartlett, C.; Guan, W.;
Smith, J . A.; Rickles,R. J .; Bohacek, R. S.; Holt, D. A.; Baron,
R.; Sawyer, T. K. A Src SH2 selective binding compound in-
hibits osteoclast-mediated resorption. Chem. Biol. 2000, 7, 225-
235.
(32) Shakespeare, W.; Yang, M.; Bohacek, R.; Cerasoli, F.; Stebbins,
K.; Sundaramoorthi, R.; Vu, C.; Pradeepan, S.; Metcalf, C.;
Haraldson, C.; Merry, T.; Dalgarno, D.; Narula, S.; Hatada, M.;
Lu, X.; Schravendijk, M. R. v.; Adams, S.; Violette, S.; Smith,
J .; Guan, W.; Catherine Bartlett; Herson, J .; Iuliucci, J .; Weigele,
M.; Sawyer, T. Structure-based design of a novel, osteoclast-
selective, nonpeptide Src SH2 inhibitor with in vivo anti-
resorptive activity. Proc. Natl. Acad. Sci. USA 2000, 97,
9373-9378.
J M0003337