Communication
ChemComm
5 M. D. Hack, D. N. Rassokhin, C. Buyck, M. Seierstad, A. Skalkin,
P. ten Holte, T. K. Jones, T. Mirzadegan and D. K. Agrafiotis, J. Chem.
Inf. Model., 2011, 51, 3275–3286.
6 A. C. Dar and K. M. Shokat, Annu. Rev. Biochem., 2011, 80, 769–795.
7 Z. O’Brien and M. Fallah Moghaddam, Expert Opin. Drug Metab.
Toxicol., 2013, 9, 1597–1612.
8 J. I. Murray, A. C. Spivey and R. Woscholski, J. Chem. Biol., 2013, 6,
175–184.
9 B. R. Sculimbrene and S. J. Miller, J. Am. Chem. Soc., 2001, 123,
10125–10126.
10 B. R. Sculimbrene, A. J. Morgan and S. J. Miller, J. Am. Chem. Soc.,
2002, 124, 11653–11656.
11 B. R. Sculimbrene, Y. Xu and S. J. Miller, J. Am. Chem. Soc., 2004, 126,
13182–13183.
Scheme 3 Tyr kinase-like selectivity in the mono-phosphorylation of
heptapeptide 20 using catalyst 2l.
12 A. J. Morgan, S. Komiya, Y. Xu and S. J. Miller, J. Org. Chem., 2006,
71, 6923–6931.
13 Y. K. Wang, A. Morgan, K. Stieglitz, B. Stec, B. Thompson, S. J. Miller
and M. F. Roberts, Biochemistry, 2006, 45, 3307–3314.
14 Y. Xu, B. R. Sculimbrene and S. J. Miller, J. Org. Chem., 2006, 71,
4919–4928.
15 K. J. Kayser-Bricker, P. A. Jordan and S. J. Miller, Tetrahedron, 2008,
64, 7015–7020.
16 Y. K. Wang, W. Chen, D. Blair, M. Pu, Y. Xu, S. J. Miller,
A. G. Redfield, T. C. Chiles and M. F. Roberts, J. Am. Chem. Soc.,
2008, 130, 7746–7755.
17 C. M. Longo, Y. Wei, M. F. Roberts and S. J. Miller, Angew. Chem., Int.
Ed., 2009, 48, 4158–4161.
18 B. Sculimbrene, A. Morgan and S. Miller, Chem. Commun., 2003,
1781–1785.
19 S. Han and S. J. Miller, J. Am. Chem. Soc., 2013, 135, 12414–12421.
20 P. A. Jordan, K. J. Kayser-Bricker and S. J. Miller, Proc. Natl. Acad. Sci.
U. S. A., 2010, 107, 20620–20624.
21 P. A. Jordan and S. J. Miller, Angew. Chem., Int. Ed., 2012, 51,
2907–2911.
22 S. Jones, D. Selitsianos, K. J. Thompson and S. M. Toms, J. Org.
Chem., 2003, 68, 5211–5216.
In summary, 2-aryl-4-DMAP-N-oxides such as 2l are highly
efficient organocatalysts for the site-selective phosphorylation
of alcohols. Their use is particularly advantageous for sub-
strates prone to elimination and when selectivity for primary
(over sec and phenolic) or for phenolic (over primary and sec)
OH groups in polyols is required. Preliminary studies have also
demonstrated that catalyst 2l displays Tyr kinase-like selectivity
for the mono-phosphorylation of a heptapeptide containing
Tyr, Ser and Thr residues. These catalysts may therefore hold
promise for the preparation of phospho-peptides for biomedical
applications although clearly achieving selectivity in the presence
of alternative nucleophiles and more polar solvents will prove
challenging; further studies towards this end are ongoing in our
laboratory.
We thank the EPSRC, the ICB (Imperial College London) and
the SCI (Messel Scholarship, JIM) for funding and Dr Lisa
D. Haigh (Imperial College London) for assistance with LC-MS2
analysis.
23 S. Jones and C. Smanmoo, Org. Lett., 2005, 7, 3271–3274.
24 O. S. Fenton, E. E. Allen, K. P. Pedretty, S. D. Till, J. E. Todaro and
B. R. Sculimbrene, Tetrahedron, 2012, 68, 9023–9028.
25 V. A. Efimov, O. G. Chakhmakhcheva and Y. A. Ovchinnikov, Nucleic
Acids Res., 1985, 13, 3651–3666.
26 V. A. Efimov, A. A. Buryakova, I. Y. Dubey, N. N. Polushin,
O. G. Chakhmakhcheva and Ovchinnikov YuA, Nucleic Acids Res.,
1986, 14, 6525–6540.
27 I. Manet, S. Monti, P. Bortolus, M. Fagnoni and A. Albini, Chem. – Eur. J.,
2005, 11, 4274–4282.
28 K. Jarowicki and P. Kocienski, J. Chem. Soc., Perkin Trans. 1, 1998,
4005.
29 J. S. McMurray, D. R. Coleman, W. Wang and M. L. Campbell,
Biopolymers, 2001, 60, 3–31.
Notes and references
‡ By contrast, Efimov25,26 found that 4-DMAP-N-oxide (2d) outper-
formed pyridine-N-oxide (2a) for oligonucleotide coupling, presumably
due to competing catalyst demands in the dual catalytic cycle.
§ o-XPCl has been described for phosphorylation previously31 but its
use synthetically has not been pursued.
¶ H2/PtO2 as used for Ph phosphate deprotection reduces phenols.28–30
1 G. Manning, D. B. Whyte, R. Martinez, T. Hunter and S. Sudarsanam, 30 G. Toth, Z. Kele and G. Varadi, Curr. Org. Chem., 2007, 11, 409–426.
Science, 2002, 298, 1912–1934. 31 S. Yamago, US Pat., 2008177049A1, 2008.
2 H. J. Jessen, N. Ahmed and A. Hofer, Org. Biomol. Chem., 2014, 12, 32 G. Manning, D. B. Whyte, R. Martinez, T. Hunter and
3526–3530.
S. Sudarsanam, Science, 2002, 298, 1912–1934.
33 J. Dengjel, I. Kratchmarova and B. Blagoev, Mol. BioSyst., 2009, 5,
1112–1121.
3 Z. A. Knight and K. M. Shokat, Chem. Biol., 2005, 12, 621–637.
4 S. K. Grant, Cell. Mol. Life Sci., 2009, 66, 1163–1177.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 13608--13611 | 13611