LETTER
Heck Reactions Using Aryldiazonium Salts towards Phosphonic Derivatives
203
(2) Kafarski, P.; Lejczak, B. Phosphorus, Sulfur Silicon Relat.
Elem. 1991, 63, 193-215. O’Donnell, M.J.; Lawley, L.K.;
Pushpavanam, P.B.; Burger, A.; Bordwell, F.G.; Zhang, X.-
M. Tetrahedron Lett. 1994, 35, 6421-6424 and literature cited
therein; for a recent review on racemic and optically active
synthesis of α-aminophosphonic acids see Uziel, J.; Genêt, J.-
P. Russ. J. Org. Chem. 1997, 33, 1521-1542.
(3) Minami, T.; Motoyoshiya, J. Synthesis 1992, 333-349.
(4) several examples of pharmaceutical active arylated vinyl-
phosphonates are published in the literature of patents e.g.
Graeve, R.; Thorwart, W.; Raiss, R.; Weithmann, K.U.;
Mullner, S., US 5,627,173 (Hoechst AG 1997). Lennon, P.J.,
US 5,434,288 (Monsanto Company 1995).
(5) Römpp Lexikon Chemie 10; Falbe, J.; Regitz, M., Eds.;
Georg Thieme Verlag: Stuttgart; Vol. 6 1999. Jin, S.;
Gonsalves, K.E., Macromolecules 1998, 31, 1010-1015 and
literature cited therein. Davies, K.P.; Walker, D.R.E.;
Woodward, G.; Smith, A.C., EP 861846 A2 (Albright &
Wilson Ltd 1998). For applications in the field of flame
retardancy in styrenic and acrylic polymers with covalently
bound phosphorous-containing groups see Ebdon, J.R, Recent
Adv. Flame Retard. Polym. Materials 1997, 8, 161.
(6) Henry, J.C.; Lavergne, D.; Ratovelomanana-Vidal, V.;
Beletskaya, I. P.; Dolgina, T.M. Tetrahedron Lett. 1998, 39,
3473-3476.
(7) Ahlbrecht, H.; Farnung, W. Synthesis 1977, 336-338.
Venugopalan, B.; Bevin Hamlet, A.; Durst, T. Tetrahedron
Lett. 1981, 22, 191-194.
(8) Minami, T.; Nishimura, K.; Hirao, I.; Suganuma, H.; Agawa,
T. J. Org. Chem. 1982, 47, 2360-2363 and literature cited
therein.
(9) Tavs, P.; Weitkamp, H. Tetrahedron 1970, 26, 5529-5534.
(10) Hirao, T.; Masunaga, Y.; Ohshiro, T.; Agawa, T. Tetrahedron
Lett. 1980, 21, 3595-3598. Hirao, T.; Masunaga, T.; Agawa,
T. Bull. Chem. Soc. Jpn. 1982, 55, 909-913.
(11) Zhong, P.; Huang, X.; Xiong, Z.-X. Synlett 1999, 721-722.
(12) Milton, L.; Donald, M. Phosphorus 1974, 4, 63.
(13) Xu, Y.; Jin, X.; Huang, G.; Huang, Y. Synthesis 1983, 556-
558. Demik, N.N.; Kabachnik, M.M.; Novikova, Z.S.;
Beletskaya, I.P. Russ. J. Org. Chem. 1995, 31, 57-60. and Zh.
Org. Khim. 1995, 31, 64-68. Ortwine, D.F.; Malone, T.C.;
Bigge, C.F.; Drummond, J.T.; Humblet, C.; Johnson, G.;
Pinter, G.W. J.Med.Chem. 1992, 35, 1345-1370. Bigge, C.F;
Johnson, G.; Ortwine, D.F.; Drummond, J.T.; Retz, D.M.;
Brahce, L.J.; Coughenour, L.L.; Marcoux, F.W.; Probert,
A.W., Jr. J. Med. Chem. 1992, 35, 1371-1384.
the Pd-catalyst and 1 mmol of CaCO3 were suspended in 5 mL
of solvent at room temperature. Subsequently 0.85 mmol of
the vinylphosphonate was added at room temperature and the
resulting mixture was stirred at 50 °C. The progress of the
reaction was monitored by measuring the volume of given off
gas (5 min − 2 h). After the reaction was completed the solvent
was evaporated and the residue was purified by flash
chromatography on silica.
(21) The stereochemistry was determinated by 1H NMR
spectroscopy. In all cases the coupling constants 3JHH indicate
an E-configuration. Characteristic NMR-data:
3a: 1H NMR δ (CDCl3) 7.46-7.27 (m, 3H), 6.80 (dd, 3JHH = 8.8
Hz, 4JHH = 2.4 Hz, 2H), 6.00 (t, 3JHH = 17.6 Hz, 1H), 4.03
(quint. 3JHH = 7.1 Hz, 4H), 3.74 (s, 3H), 1.26 (t, 3JHH = 7.1 Hz,
6H); 13C NMR δ (CDCl3) 161.1 (s), 148.2 (d, 2JCP = 6.1 Hz,
CH), 129.1 (d), 124.0 (s), 114.0 (d), 110.7 (d, 1JCP = 191.6 Hz,
CH), 61.6 (t, 2JCP = 5.9 Hz), 55.1 (q), 16.20 (q).
3b: 1H NMR: δ (CDCl3) 7.64-7.25 (m, 3H), 7.07 (d, 3JHH = 8.5
Hz, 1H), 6.31 (t, 3JHH = 17.8 Hz, 1H), 4.11 (quint. 3JHH = 7.5
Hz, 4H), 3.90 (s, 3H), 1.31 (t, 3JHH = 7.0 Hz, 6H); 13C NMR δ
(CDCl3) 158.1 (s), 148.7 (d, 2JCP = 6.7 Hz, CH), 136.9 (s),
129.4 (d), 124.0 (s), 113.4 (d), 112.8 (d, 1JCP = 191.3 Hz, CH),
63.4 (t, 2JCP = 5.5 Hz), 56.9 (q), 16.8 (q).
3c: 1H NMR: δ (CD3OD) 8.85-8.74 (m, 1H), 8.53-7.76 (m,
3H), 7.10 (td, 3JHH = 17.5 Hz, 4JHH = 2.9 Hz, 1H), 4.75 (quint.,
3JHH = 6.2 Hz, 4H), 2.01 (t, 3JHH = 6.2 Hz, 6H); 13C NMR δ
(CD3OD) 154.5 (s, 1JCF = 258.9 Hz), 148.3 (d, 2JCP = 8.4 Hz),
136.1 (d, 3JCF = 8.6 Hz), 134.0 (s, 3JCF = 8.4 Hz), 127.8 (d,
2JCF = 22.6 Hz), 121.5 (s, 2JCF = 22.0 Hz), 116.9 (d,
1JCP = 189.6 Hz), 64.1 (t, 2JCP = 5.5 Hz), 17.9 (q).
3d: 1H NMR δ (CDCl3) 8.25 (t, 3JHH = 17.6 Hz, 1H), 6.57 (s,
2H), 6.25 (t, 3JHH = 17.6 Hz, 1H), 4.14 (quint., 3JHH = 7.5 Hz,
4H), 3.82 (s, 6H), 3.74 (s, 3H), 1.35 (t, 3JHH = 7.1 Hz, 6H); 13
C
NMR δ (CDCl3) 149.2 (d, 2JCP = 6.9 Hz), 144.3 (s), 132.8 (s),
118.4 (d, 1JCP = 194.4 Hz), 107.3 (d), 62.4 (t, 2JCP = 5.0 Hz),
56.4 (q), 52.3 (q), 13.8 (q).
3e: 1H NMR δ (CDCl3) 7.62 (t, 3JHH = 17.5 Hz, 1H), 7.50 (dd,
3JHH = 6.0 Hz, 4JHH = 1.7 Hz, 2H), 7.27-7.07 (m, 2H), 6.16 (t,
3JHH = 17.5 Hz, 1H), 4.07 (quint., 3JHH = 7.0 Hz, 4H), 1.28 (t,
3JHH = 7.0 Hz, 6H); 13C NMR δ (CDCl3) 146.3 (d, 2JCP = 7.6
Hz), 133.2 (d), 131.0 (d), 127.6 (d), 127.4 (d), 124.6 (s), 117.5
(d, 1JCP = 189.3 Hz), 61.9 (t, 2JCP = 5.5 Hz), 16.3 (q).
3f: 1H NMR δ (CDCl3) 8.22 (t, 3JHH = 18.0 Hz, 1H), 7.73 (d,
3JHH = 8.4 Hz, 2H), 7.23 (d, 3JHH = 8.4 Hz, 2H), 6.23 (t,
3JHH = 18.0 Hz, 1H), 4.25 (quint., 3JHH = 7.0 Hz, 4H), 1.39 (t,
3JHH = 7.1 Hz, 1H); 13C NMR δ (CDCl3) 148.0 (d, 2JCP = 7.0
Hz), 138.0 (d), 133.5 (s), 129.6 (d), 117.2 (d, 1JCP = 192.4 Hz),
97.4 (s), 62.1 (t, 2JCP = 5.0 Hz), 14.2 (q).
(14) Axelrad, G.; Laosooksathit, S.; Engel, R. J. Org. Chem. 1981,
46, 5200-5204.
(15) Petrakis, K.S.; Nagabhushan, T.L. J.Am.Chem.Soc. 1987,
109, 2831-2833.
(16) Burini, A.; Cacchi, S.; Pace, P.; Pietroni, B.R. Synlett 1995,
677-679. Holt, D.A.; Erb, J.M. Tetrahedron Lett. 1989, 30,
5393-5396.
(17) For some recent works in this area : see Beller, M.,
Kühlein,K., Synlett 1995, 441-442. Ikenaga, K.; Matsumoto,
S.; Kikukawa, K.; Matsuda, T., Chem.Lett. 1988, 873-876.
Sengupta, S., Sadhukhan, S.K., Tetrahedron Lett. 1998; 39,
715-718. Sengupta, S., Sadhukan, S.K., Bhattacharyya, S.,
Guha, J., J. Chem. Soc., Perkin Trans 1 1998, 407-410.
(18) Wada, Y.; Oda, R. Kogyo Kagaku Zasshi 1964, 67, 2093. C.A.
1965, 62, 13177.
(19) Brunner, H., Le Cousturier de Courcy, N.; Genêt, J-P.
Tetrahedron Lett. 1999, 40, 4815-4818.
(20) Preparation of aryldiazonium salts : Roe, A. Org. React.
1949, 5, 193-228. Doyle, M.P.; Bryker, W.J. J. Org. Chem.
1979, 44, 1572-1574. Typical procedure: In a reaction flask 1
mmol of the corresponding aryldiazonium salt, 0.02 mmol of
3g: 1H NMR δ (CDCl3) 8.21 (t, 3JHH = 19.9 Hz, 1H), 7.97 (dd,
3JHH = 7.6 Hz, 4JHH = 1.4 Hz, 1H), 7.61-7.40 (m, 3H), 6.16 (t,
3JHH = 19.8 Hz, 1H), 4.40 (q, 3JHH = 7.1 Hz, 2H), 4.19 (quint.
3JHH = 7.0 Hz, 4H), 1.39 (t, 3JHH = 7.1 Hz, 9H); 13C NMR δ
(CDCl3) 166.3 (s), 147.8 (d, 2JCP = 7.0 Hz), 136.5 (s), 132.1
(d), 130.3 (d), 129.2 (d), 127.4 (d), 119.8 (s), 116.1 (d,
1JCP = 189.6 Hz), 62.1 (t, 2JCP = 4.5 Hz), 60.39 (t), 16.1 (q),
13.9 (q).
(22) To our knowledge some examples using one-pot sequences
Heck reaction − hydrogenation are known: Meyer, W.;
Reinehr, D.; Oertle, K.; Schurter, R., EP 0 102 925 A2 and EP
0 248 245 A2 (Ciba-Geigy 1983). Bräse, S.; Schroen, M.
Angew. Chem. Int. Ed. 1999, 38, 1071-1073. Typical
procedure: In a reaction flask 1 mmol of the corresponding
aryldiazonium salt, 0.02 mmol of the Pd-catalyst and 1 mmol
of CaCO3 were suspended in 5 mL of solvent at room
temperature. Subsequently 0.85 mmol of the
vinylphosphonate was added at room temperature and the
resulting mixture was stirred at 50 °C. The progress of the
Synlett 2000, No. 2, 201–204 ISSN 0936-5214 © Thieme Stuttgart · New York