First author et al.
Report
Hydroalkoxylation of Non-activated Olefins Catalysed by Lewis
Superacids in Alcoholic Solvents: an Eco-Friendly Reaction.
Tetrahedron Lett. 2007, 48, 5731-5734. (f) Kelly, B. D.; Allen, J. M.;
Tundel, R. E.; Lambert, T. H. Multicatalytic Synthesis of Complex
Supporting Information
The Supporting Information is available free of charge on the
procedure, characterization data, spectroscopic spectra, and
chromatograms for ee determination (pdf), Crystallographic data
for 2a (CIF).
Tetrahydrofurans
Involving
Bismuth(III)
Triflate
Catalyzed
Intramolecular Hydroalkoxylation of Unactivated Olefins. Org. Lett.
2009, 11, 1381-1383. (g) Dzudza, A.; Marks, T. J. Efficient
Intramolecular Hydroalkoxylation/Cyclization of Unactivated Alkenols
Mediated by Lanthanide Triflate Ionic Liquids. Org. Lett. 2009, 11,
1523-1526. (h) Dzudza, A.; Marks, T. J. Efficient Intramolecular
Hydroalkoxylation of Unactivated Alkenols Mediated by Recyclable
Lanthanide Triflate Ionic Liquids: Scope and Mechanism. Chem. Eur. J.
2010, 16, 3403-3422. (i) Ke, F.; Li, Z.; Xiang, H.; Zhou, X. Catalytic
Hydroalkoxylation of Alkenes by Iron(III) Catalyst. Tetrahedron Lett.
2011, 52, 318-320. (j) Schlüter, J.; Blazejak, M.; Hintermann, L.
Aluminum-Catalyzed Hydroalkoxylation at Elevated Temperatures:
Fast and Simple Access to Coumarans and Other Oxygen Heterocycles.
ChemCatChem 2013, 5, 3309-3316. (k) Deka, M. J.; Indukuri, K.;
Sultana, S.; Borah, M.; Saikia, A. K. Synthesis of Five-, Six-, and
Seven-Membered 1,3- and 1,4-Heterocyclic Compounds via
Accession Codes
CCDC 1863034 contains the supplementary crystallographic
data for compound 2a. These data can be obtained free of charge
re-quest@ccdc.cam.ac.uk, or by contacting the Cambridge
Crystallo-graphic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: +44 1223 336033.
Acknowledgement
We are grateful for the generous financial support from the
National Natural Science Foundation of China (21672148,
21871181), the Shanghai Municipal Education Commission
(2019-01-07-00-02-E00029), the Science and Technology
Commission of Shanghai Municipality (19XD1402700), and the
Shanghai Engineering Research Center of Green Energy Chemical
Engineering.
Intramolecular
Hydroalkoxylation/Hydrothioalkoxylation
of
Alkenols/Thioalkenols. J. Org. Chem. 2015, 80, 4349-4359. (l) Zhu, X.;
Li, G.; Xu, F.; Zhang, Y.; Xue, M.; Shen, Q. Investigation and
Mechanistic Study into Intramolecular Hydroalkoxylation of
Unactivated Alkenols Catalyzed by Cationic Lanthanide Complexes.
Tetrahedron 2017, 73, 1451-1458.
References
[3] For leading references on hydroalkoxylation of unactivated olefins
catalyzed by Brønsted acids, see: (a) Li, Z.; Zhang, J.; Brouwer, C.; Yang,
C.-G.; Reich, N. W.; He, C. Brønsted Acid Catalyzed Addition of
Phenols, Carboxylic Acids, and Tosylamides to Simple Olefins. Org.
Lett. 2006, 8, 4175-4178. (b) Rosenfeld, D. C.; Shekhar, S.; Takemiya,
A.; Utsunomiya, M.; Hartwig, J. F. Hydroamination and
Hydroalkoxylation Catalyzed by Triflic Acid. Parallels to Reactions
Initiated with Metal Triflates. Org. Lett. 2006, 8, 4179-4182. (c)
Komeyama, K.; Morimoto, T.; Nakayama, Y.; Takaki, K. Cationic
Iron-Catalyzed Intramolecular Hydroalkoxylation of Unactivated
Olefins. Tetrahedron Lett. 2007, 48, 3259-3261. (d) Tschan, M. J.-L.;
Thomas, C. M.; Strub, H.; Carpentier, J.-F. Copper(II) Triflate as a
Source of Triflic Acid: Effective, Green Catalysis of Hydroalkoxylation
Reactions. Adv. Synth. Catal. 2009, 351, 2496-2504. (e) Kena Diba, A.;
Begouin, J.-M.; Niggemann, M. Calcium Catalyzed Hydroalkoxylation.
Tetrahedron Lett. 2012, 53, 6629-6632.
[4] For leading references on hydroalkoxylation of unactivated olefins
catalyzed by transition metals, see: (a) Qian, H.; Han, X.; Widenhoefer,
R. A. Platinum-Catalyzed Intramolecular Hydroalkoxylation of γ- and
δ-Hydroxy Olefins to Form Cyclic Ethers. J. Am. Chem. Soc. 2004, 126,
9536-9537. (b) Yang, C.-G.; He, C. Gold(I)-Catalyzed Intermolecular
Addition of Phenols and Carboxylic Acids to Olefins. J. Am. Chem. Soc.
2005, 127, 6966-6967. (c) Hirai, T.; Hamasaki, A.; Nakamura, A.;
Tokunaga, M. Enhancement of Reaction Efficiency by Functionalized
Alcohols on Gold(I)-Catalyzed Intermolecular Hydroalkoxylation of
Unactivated Olefins. Org. Lett. 2009, 11, 5510-5513. (d) Zhu, Y.; Zhou,
W.; Petryna, E. M.; Rogers, B. R.; Day, C. S.; Jones, A. C. Insights into
Alkene Activation by Gold: Nucleophile Activation with Base as a
Trigger for Generation of Lewis Acidic Gold. ACS Catal. 2016, 6,
7357-7362.
[1] For leading reviews on hydroalkoxylation of olefins, see: (a) Chianese,
A. R.; Lee, S. J.; Gagné, M. R. Electrophilic Activation of Alkenes by
Platinum(II): So Much More Than a Slow Version of Palladium(II).
Angew. Chem., Int. Ed. 2007, 46, 4042-4059. (b) Weiss, C. J.; Marks, T.
J. Organo-f-element Catalysts for Efficient and Highly Selective
Hydroalkoxylation and Hydrothiolation. Dalton T 2010, 39, 6576-6588.
(c) Wang, Y.-M.; Lackner, A. D.; Toste, F. D. Development of Catalysts
and Ligands for Enantioselective Gold Catalysis. Acc. Chem. Res. 2014,
47, 889-901. (d) Nicewicz, D. A.; Hamilton, D. S. Organic Photoredox
Catalysis as
a General Strategy for Anti-Markovnikov Alkene
Hydrofunctionalization. Synlett 2014, 25, 1191-1196. (e)
Rodriguez-Ruiz, V.; Carlino, R.; Bezzenine-Lafollée, S.; Gil, R.; Prim, D.;
Schulz, E.; Hannedouche, J. Recent Developments in Alkene
Hydrofunctionalisation Promoted by Homogeneous Catalysts Based
on Earth Abundant Elements: Formation of C–N, C–O and C–P Bond.
Dalton T 2015, 44, 12029-12059. (f) Greenhalgh, M. D.; Jones, A. S.;
Thomas, S. P. Iron-Catalysed Hydrofunctionalisation of Alkenes and
Alkynes. ChemCatChem 2015, 7, 190-223. (g) Lohr, T. L.; Li, Z.; Marks,
T. J. Thermodynamic Strategies for C−O Bond Formation and
Cleavage via Tandem Catalysis. Acc. Chem. Res. 2016, 49, 824-834. (h)
Bezzenine-Lafollée, S.; Gil, R.; Prim, D.; Hannedouche, J. First-Row
Late Transition Metals for Catalytic Alkene Hydrofunctionalisation:
Recent Advances in C-N, C-O and C-P Bond Formation. Molecules
2017, 22, 1901-1929.
[2] For leading references on hydroalkoxylation of unactivated olefins
catalyzed by strong Lewis acids, see: (a) Yang, C.-G.; Reich, N. W.; Shi,
Z.; He, C. Intramolecular Additions of Alcohols and Carboxylic Acids to
Inert Olefins Catalyzed by Silver(I) Triflate. Org. Lett. 2005, 7,
4553-4556. (b) Coulombel, L.; Favier, I.; Duñach, E. Catalytic
Formation of C–O Bonds by Alkene Activation: Lewis
Acid-Cycloisomerisation of Olefinic Alcohols. Chem. Commun. 2005,
2286-2288. (c) Yeh, M.-C. P.; Yeh, W.-J.; Tu, L.-H.; Wu, J.-R. CeCl3·7H2O–
[5] Murayama, H.; Nagao, K.; Ohmiya, H.; Sawamura, M.
Copper(I)-Catalyzed Intramolecular Hydroalkoxylation of Unactivated
Alkenes. Org. Lett. 2015, 17, 2039-2041.
NaI
Catalyzed
Intramolecular
Addition
Reactions
of
[6] Schlüter, J.; Blazejak, M.; Boeck, F.; Hintermann, L. Asymmetric
Hydroalkoxylation of Non-Activated Alkenes: Titanium-Catalyzed
Cycloisomerization of Allylphenols at High Temperatures. Angew.
Chem., Int. Ed. 2015, 54, 4014-4017.
[7] Tsuji, N.; Kennemur, J. L.; Buyck, T.; Lee, S.; Prévost, S.; Kaib, P. S. J.;
Bykov, D.; Farès, C.; List, B. Activation of Olefins via Asymmetric
Brønsted Acid Catalysis. Science 2018, 359, 1501-1505.
7-Hydroxy-1,3-dienes: a Facile Approach to Hexahydrobenzofurans
and Tetrahydrofurans. Tetrahedron 2006, 62, 7466-7470. (d)
Coulombel, L.; Rajzmann, M.; Pons, J.-M.; Olivero, S.; Duñach, E.
Aluminium (III) Trifluoromethanesulfonate as an Efficient Catalyst for
the Intramolecular Hydroalkoxylation of Unactivated Olefins:
Experimental and Theoretical Approaches. Chem. Eur. J. 2006, 12,
6356-6365. (e) Lemechko, P.; Grau, F.; Antoniotti, S.; Duñach, E.
[8] Shigehisa, H.; Hayashi, M.; Ohkawa, H.; Suzuki, T.; Okayasu, H.; Mukai,
Chin. J. Chem. 2019, 37, XXX-XXX
© 2T01h9isSIOaCrt,iCcAlSe, Sishapnrgohatei,c&teWdILbEYy-VcCoHpVyerrliagghGtm. AbHll&rCiog.hKtGsarAe, sWeerivnheedim.