2562
which can be trapped in the medium by nucleophiles present. The reaction opens a new route to α-alkoxy,
α-amino and α-hydroxy hydroxamic acids, which can give α-amino and α-hydroxy acids.
References
1. Lai, J. T. Tetrahedron Lett. 1982, 23, 595–598 and references cited therein.
2. Ogata, Y.; Harade, T.; Mat Suyama, K.; Ikejiri, T. J. Org. Chem. 1975, 40, 2960–2962.
3. House, H. O. Modern Synthetic Reactions; Benjamin: Menlo Park, 1982; p. 301.
4. (a) Neilands, J. B. Science 1967, 156, 1443–1444. (b) Maehr, H. Pure Appl. Chem. 1971, 28, 603–636.
5. Karunartne, V.; Hoveyda, H. R.; Orvig, C. Tetrahedron Lett. 1992, 33, 1827–1830.
6. Boukhris, S.; Souizi, A.; Robert, A. Tetrahedron Lett. 1996, 37, 179–182.
7. Spectral data are in full agreement with the proposed structures. For example: 2a: IR (CCl4): ν 1720 (CO) and 3150–3400
1
(NH, OH) cm−1. H NMR (CDCl3, 250 MHz) δ ppm: 5.42 (s, 1H, CHBr); 7.65 (br s, 1H, OH); 7.31–7.47 (m, 5H, Ar,
NH); 2.29 (s, 3H, CH3). 13C NMR: 170.8 (dd, 2J=3.9 and 4.0 Hz, CO); 59.4 (d, 1J=154.2 Hz, CHBr); 127.0, 128.5, 129.8,
1
1
134.8 (Ar-ring C); 21.2 (q, J=126.2 Hz, CH3). Compound 2d: IR (Nujol): ν 1670 (CO) and 3120 (NH) cm−1. H NMR
(CDCl3+TFA, 250 MHz) δ ppm: 5.42 (s, 1H, CHBr); 7.30–7.40 (m, 4H, Ar); 3.78 (s, 3H, OCH3); 2.30 (s, 3H, CH3).
13C NMR: 166.8 (dd, 2J=4.0 and 4.4 Hz, CO); 58.8 (d, 1J=153.2 Hz, CHBr); 127.2, 128.8, 132.8, 139.4 (Ar-ring C); 21.2
(q, J=126.4 Hz, CH3); 64.5 (q, J=128.4 Hz, OCH3). HMRS calcd for C10H12NO2Br (M+·): 259.0865, found: 259.083.
1
1
Compound 2f: IR (Nujol): ν 1690 (CO) and 3125 (NH) cm−1. H NMR (CDCl3+TFA, 250 MHz) δ ppm: 5.44 (s, 1H,
1
CHBr); 7.35–7.45 (m, 5H, Ar); 3.77 (s, 3H, OCH3). 13C NMR: 166.6 (dd, J=4.1 and 4.2 Hz, CO); 58.4 (d, J=153.4
2
1
Hz, CHBr); 127.2, 128.8, 130.2, 135.4 (Ar-ring C); 64.4 (q, J=128.1 Hz, OCH3). HMRS calcd for C9H10NO2Br (M+·):
1
244.9865, found: 244.984; calcd for (M+−C2H4NO2): 170.9632; found: 170.961. Compound 3c: IR (CCl4): ν 1720 (CO)
and 3200–3400 (NH, OH) cm−1. 1H NMR (CDCl3, 250 MHz) δ ppm: 5.32 (s, 1H, CH); 7.61 (br s, 1H, OH); 7.31–7.41 (m,
5H, Ar, NH); 2.28 (s, 3H, CH3), 3.40 (s, 3H, OCH3). 13C NMR: 171.6 (s, CO); 58.3 (d, J=153.2 Hz, CH); 125.7, 128.5,
1
132.8, 138.4 (Ar-ring C); 20.2 (q, 1J=126.7 Hz, CH3), 57.3 (q, 1J=127.5 Hz, OCH3). Compound 3f: IR (CCl4): ν 1680 (CO)
and 3120 (NH) cm−1. H NMR (CDCl3, 250 MHz) δ ppm: 5.36 (s, 1H, CH); 7.30–7.42 (m, 5H, Ar, NH); 3.78 (s, 3H,
1
HNOCH3); 3.40 (s, 3H, OCH3); 2.30 (s, 3H, CH3). 13C NMR: 166.6 (dd, J=4.1 and 4.2 Hz, CO); 58.2 (d, J=153.5 Hz,
2
1
CH); 127.8, 129.2, 132.4, 139.7 (Ar-ring C); 21.2 (q, 1J=126.4 Hz, CH3); 57.4 (q, 1J=128.5 Hz, OCH3); 64.4 (q, 1J=128.5
Hz, HNOCH3). Compound 3g: IR (CCl4): ν 1720 (CO) and 3300–3400 (NH, OH) cm−1. H NMR (CDCl3, 250 MHz) δ
1
ppm: 5.35 (s, 1H, CH); 7.70 (br s,1H, OH); 7.31–7.41 (m, 5H, Ar, NH); 2.28 (s, 3H, CH3); 4.20 (s, 1H, OH). Compound 3p:
IR (CCl4): ν 1720 (CO) and 3210–3330 (NH, OH) cm−1. 1H NMR (CDCl3, 250 MHz) δ ppm: 5.03 (s, 1H, CH); 7.61 (br s,
1H, OH); 7.31–7.42 (m, 5H, Ar, NH); 2.52 (d, 3H, NCH3); 2.28 (s, 3H, CH3). 13C NMR: 169.5 (s, CO); 52.5 (d, 1J=152.6
Hz, CH); 127.8, 129.2, 132.4, 139.7 (Ar-ring C); 20.2 (q, 1J=126.7 Hz, CH3); 51.3 (q, 1J=126.5 Hz, NCH3). HMRS calcd
for C10H14N2O2 (M+·): 194.1055, found: 194.104. Compound 5g: IR (Nujol): ν 1720 (CO) and 3400 (OH) cm−1. 1H NMR
(CDCl3+TFA, 250 MHz) δ ppm: 5.36 (s, 1H, CH); 7.22 (m, 4H, Ar); 2.30 (s, 3H, CH3). HMRS calcd for C9H10O3 (M+·):
166.0629, found: 166.062. Anal. calcd: C, 65.06; H, 6.02. Found: C, 64.94; H, 5.98. Compound 5k: IR (Nujol): ν 15900
1
(CO), 2700 (NH) and 3060 (OH) cm−1. H NMR (CDCl3+TFA, 250 MHz) δ ppm: 5.31 (s, 1H, CH); 7.25–7.40 (m, 9H,
Ar); 2.30 (s, 3H, CH3). 13C NMR: 173.4 (s, CO); 58.9 (d, 1J=153.5 Hz, CH); 127.8, 129.2, 132.4, 139.7 (Ar-ring C); 21.2
1
(q, J=126.4 Hz, CH3). HMRS calcd for C15H15NO2 (M+·): 241.1103, found: 241.109. Anal. calcd: C, 74.69; H, 6.22; N,
5.81. Found: C, 74.37; H, 6.16; N, 5.77.
8. Khamliche, L.; Robert, A. Tetrahedron Lett. 1986, 27, 5491–5494.
9. (a) Baumgarten, H. E. J. Am. Chem. Soc. 1962, 84, 4975–4974. (b) L’Abbé, G. Angew. Chem., Int. Ed. Engl. 1980, 19,
276–280. (c) Greenwald, R. B.; Taylor, E. C. J. Am. Chem. Soc. 1968, 90, 5272–5274. (d) Taylor, E. C.; Haley, N. H.;
Clemens, R. J. J. Am. Chem. Soc. 1981, 103, 7743–7744.
10. Scrimin, P.; D’Angeli, F.; Veronese, A. C. Synthesis 1982, 586–587.
11. Legrel, P.; Baudy-Floc’h, M.; Robert, A. Tetrahedron 1988, 44, 4805–4814.
12. (a) Robottom, G. M.; Marrero, R. J. Org. Chem. 1975, 40, 3783–3785. (b) Moriarty, R. M.; Hu, H. Tetrahedron Lett. 1981,
22, 2747–2750.
13. Nagai, M.; Kojima, F.; Naganawa, H.; Hamada, M.; Aoyagi, T.; Takeuchi, T. J. Antibiot. 1997, 50, 82–87.
14. (a) Aoyagi, T.; Yoshida, S.; Nakamura, Y.; Shigihara, Y.; Hamada, M.; Takeuchi, T. J. Antibiot. 1990, 43, 143–148. (b)
Yoshida, S.; Nakamura, Y.; Naganawa, H.; Aoyagi, T.; Takeuchi, T. J. Antibiot. 1990, 43, 149–154.