Mendeleev Commun., 2021, 31, 246–247
Ph
N
Oꢀ1Aꢁ
Ph
N
CꢀꢇAꢁ
CꢀꢈAꢁ
X
O
CꢀꢆAꢁ
Cꢀ2Aꢁ
Nꢀ2Aꢁ
X
O
i
Cꢀ1ꢅAꢁ
ii
N
Cꢀ1ꢄAꢁ
1
Cꢀ10Aꢁ
CꢀꢃAꢁ
Ac
99%
traces
Cꢀ1ꢃAꢁ
N
Nꢀ1Aꢁ
CꢀꢂAꢁ
CꢀꢄAꢁ
Cꢀ11Aꢁ
CꢀꢅAꢁ
Ac
Cꢀ12Aꢁ
O
Cꢀ1ꢂAꢁ
Oꢀ2Aꢁ
8
7
Figure 1 Molecular structure of compound 3a (thermal ellipsoids are
given with 40% probability).
Scheme 3 Reagents and conditions: i, Ac2O, NEt3, DMAP, CH2Cl2, room
temperature, 24 h; ii, furan, AlCl3, CH2Cl2, room temperature, 24 h.
decomposition, however short keeping of the furan-AlCl3
mixture followed by the addition of methylideneimidazolones
gave adducts 5a, 6a in moderate yields (Scheme 2). Apparently,
in this way furan in the reaction with compounds 1, 2 underwent
α-amidoalkylation instead of expected cycloaddition. It can be
assumed that the reaction proceeds according to the mechanism
described for the reactions of α-amidoacrylates with five-
membered heterocycles.16 Under the action of Lewis acid, the
enamine–imine equilibrium of methylideneimidazolones shifts
towards the imine forms 1', 2' (see Scheme 2), which effectively
interact with activated furan–AlCl3 complex to form the
α-amidoalkylation products 5a, 6a. In the NMR spectra of the
reaction mixtures, the trace amounts of the Michael addition
products 5b, 6b formed from the predominant enamine tautomer
were also detected. The comparatively lower yields of products
6 obtained from methylidenethiohydantoin 2 relatively to its
oxygen analogue 1 may be associated with the weaker acceptor
properties of the double C=S bond and the possible partial
hydrolysis of the thioamide fragment in the course of the final
aqueous work up.
whereas the reaction with furan in the presence of a Lewis acid
(AlCl3) proceeds predominantly as α-amidoalkylation of furan.
This work was supported by the Russian Science Foundation
(grant no. 20-73-00234) and Russian Foundation for Basic
Research (grant no. 19-03-00201). This work in part of NMR
and X-ray study was supported by the M.V. Lomonosov Moscow
State University Program of Development.
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2021.03.034.
References
1 F. L. Wessels, T. J. Schwan and S. F. Pong, J. Pharm. Sci., 1980, 69,
1102.
2 M. Meusel and M. Gütschow, Org. Prep. Proced. Int., 2004, 36, 391.
3 S. M. Sondhi, J. Singh, A. Kumar, H. Jamal and P. P. Gupta, Eur.
J. Med. Chem., 2009, 44, 1010.
4 N. Teno, K. Gohda, K. Wanaka, Y. Tsuda, T. Sueda, Y. Yamashita and
T. Otsubo, Bioorg. Med. Chem., 2014, 22, 2339.
In the 1H NMR spectra of products 5a and 6a, the characteristic
singlets for the methyl group at ~1.9 ppm, as well as two doublets
and a double doublets for α-substituted furans were observed.
Michael adducts 5b and 6b are characterized by the ABX spin
system in the region of 3.0–4.5 ppm.
To confirm the proposed mechanism of amidoalkylation, we
synthesized an acylated methylidenehydantoin derivative 7
incapable of imine–enamine tautomerism (Scheme 3). Indeed,
compound 7 did not essentially react with furan in the presence
of AlCl3; only the inseparable traces of the Michael adduct 8
were detected in the NMR spectrum of the crude material while
only the starting imidazolone 1 and furan polymerization
products could be ultimately isolated.
5 M. Lamothe, M. Lannuzel and M. Perez, J. Comb. Chem., 2002, 4, 73.
6 J. Handzlik, E. Szymanska, J. Chevalier, E. Otrebska, K. Kiec-
Kononowicz, J.-M. Pagès and S. Alibert, Eur. J. Med. Chem., 2011, 46,
5807.
7 M. J. Meyers, E. J. Anderson, S. A. McNitt, T. M. Krenning, M. Singh,
J. Xu, W. Zeng, L. Qin, W. Xu, S. Zhao, L. Qin, C. S. Eickhoff, J. Oliva,
M.A. Campbell, S. D.Arnett, M. J. Prinsen, D. W. Griggs, P. G. Ruminski,
D. E. Goldberg, K. Ding, X. Liu, Z. Tu, M. D. Tortorella, F. M. Sverdrup
and X. Chen, Bioorg. Med. Chem., 2015, 23, 5144.
8 Y. A. Ivanenkov, S. V. Vasilevski, E. K. Beloglazkina, M. E. Kukushkin,
A. E. Machulkin, M. S. Veselov, N. V. Chufarova, E. S. Chernyagina,
A. S. Vanzcool, N. V. Zyk, D. A. Skvortsov, A. A. Khutornenko,
A. L. Rusanov, A. G. Tonevitsky, O. A. Dontsova and A. G. Majouga,
Bioorg. Med. Chem. Lett., 2015, 25, 404.
9 A. A. Beloglazkina, D. A. Skvortsov, V. A. Tafeenko, A. G. Majouga,
N. V. Zyk and E. K. Beloglazkina, Russ. Chem. Bull., Int. Ed., 2018, 67,
562 (Izv. Akad. Nauk, Ser. Khim., 2018, 562).
10 A. A. Beloglazkina, N. A. Karpov, S. R. Mefedova, V. S. Polyakov,
D. A. Skvortsov, M. A. Kalinina, V. A. Tafeenko, A. G. Majouga,
N. V. Zyk and E. K. Beloglazkina, Russ. Chem. Bull., Int. Ed., 2019, 68,
1006 (Izv. Akad. Nauk, Ser. Khim., 2019, 1006).
11 M. E. Kukushkin, D. A. Skvortsov, M. A. Kalinina, V. A. Tafeenko,
V. V. Burmistrov, G. M. Butov, N. V. Zyk, A. G. Majouga and
E. K. Beloglazkina, Phosphorus, Sulfur Silicon Relat. Elem., 2020, 195,
544.
12 A. Beloglazkina, A. Barashkin, V. Polyakov, G. Kotovsky, N. Karpov,
S. Mefedova, B. Zagribelny, Y. Ivanenkov, M. Kalinina, D. Skvortsov,
V. Tafeenko, N. Zyk, A. Majouga and E. Beloglazkina, Chem.
Heterocycl. Compd., 2020, 56, 747 (Khim. Geterotsikl. Soedin., 2020,
56, 747).
In summary, the reactions of 5-methylidene-2-chalcogeno-
imidazolidin-4-ones with cyclic dienes, viz. cyclopentadiene and
furan, proceed in different ways. With cyclopentadiene, tricyclic
cage structures with a spiro junction of cycles are formed
Ph
N
Ph
N
tautomerization
X
X
O
O
NH
1, 2
N
Me
1', 2'
Ph
N
Ph
N
X
X
O
O
13 N. Abe, F. Fujisaki and K. Sumoto, Chem. Pharm. Bull., 1998, 46, 142.
14 F. Fujisaki, K. Shoji and K. Sumoto, Heterocycles, 2009, 78, 213.
15 T. A. Cernak and J. L. Gleason, J. Org. Chem., 2008, 73, 102.
16 A. la Hoz, A. Diaz-Ortiz, M. V. Gómez, J. A. Mayoral, A. Moreno,
A. M. Sánchez-Migallón and E. Vázquez, Tetrahedron, 2001, 57, 5421.
i
NH
NH
+
Me
O
O
5a X = O, 51%
6a X = S, 25%
5b X = O, traces
6b X = S, traces
Scheme 2 Reagents and conditions: i, furan, AlCl3, CH2Cl2, room
temperature, 24 h.
Received: 24th November 2020; Com. 20/6376
– 247 –