J. Am. Chem. Soc. 2000, 122, 6335-6336
Tri-9-anthrylborane and Its Derivatives: New
6335
Boron-Containing π-Electron Systems with
Divergently Extended π-Conjugation through Boron
Shigehiro Yamaguchi,* Seiji Akiyama, and Kohei Tamao*
Institute for Chemical Research, Kyoto UniVersity
Figure 1. Schematic representations of several extension modes of
π-conjugation: Trivalent hetero-elements are postulated as the diverging
point for the starburst extension mode.
Uji, Kyoto 611-0011, Japan
ReceiVed December 30, 1999
Several extension modes of π-conjugation have been realized
in the carbon π-electron systems, as shown in Figure 1. Those
involve (a) a linear chain-type, (b) a sheet-type, and (c) a sphere-
and tube-type extension, represented by polyacetylene, graphite,
and fullerene and carbon nanotube, respectively.1 In contrast to
these structures, (d) a starburst divergent-type extension of
π-conjugation seems difficult to achieve in the carbon π-electron
systems. Such π-conjugation may be readily realized using Group
13 or 15 elements at the diverging point. Triarylamine derivatives
represent one typical example in which π-conjugation through
the lone-pair electrons on nitrogen in the HOMO level causes
their low ionization potentials and makes them a useful class of
hole-transporting materials.2 As a new family of π-electron
systems with such π-conjugation, we now report the trianthryl-
borane derivatives, where three anthracene π-systems are intro-
duced on a boron atom. In contrast to the amine cases, the
π-conjugation would be divergently extended through the vacant
p-orbital on boron in the LUMO level,3-7 thus realizing the high
electron-accepting properties.8
Scheme 1a
Trianthrylborane 1 itself and three more extended derivatives
2-4 have been studied. Compound 2 is a dianthrylboryl-substitued
trianthrylborane and compounds 3 and 4 are the dimesitylboryl-
substituted derivatives of 1 and 2, respectively. These compounds
have been prepared from bromoanthracenes 5 and 6 as the key
precursors, as shown in Scheme 1. All the compounds thus
prepared have a substantial stability toward air and moisture and
(1) Handbook of Organic Conducting Molecules and Polymers; Nalwa,
H. S., Ed.; John Wiley & Sons: Chichester, 1997.
(2) For examples see: (a) Shirota, Y.; Kobata, T.; Noma, N. Chem. Lett.
1989, 1145. (b) Higuchi, A.; Inada, H.; Kobata, T.; Shirota, Y. AdV. Mater.
1991, 3, 549. (c) Inada, H.; Shirota, Y. J. Mater. Chem. 1993, 3, 319. (d)
Kuwabara, Y.; Ogawa, H.; Inada, H.; Noma, N.; Shirota, Y. AdV. Mater. 1994,
6, 677. (e) Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.;
Yonemoto, Y.; Kawami, S.; Imai, K. Appl. Phys. Lett. 1994, 65, 807. (f)
Katsuma, K.; Shirota, Y. AdV. Mater. 1998, 10, 223. (g) Louie, J.; Hartwig,
J. F.; Fry, A. J. J. Am. Chem. Soc. 1997, 119, 11695. (h) Thelakkat, M.;
Schmidt, H.-W. AdV. Mater. 1998, 10, 219.
(3) π-Conjugation through the vacant p-orbital of boron; for examples
see: (a) Zweifel, G.; Clark, G. M.; Leung, T.; Whitney, C. C. J. Organomet.
Chem. 1976, 117, 303. (b) Eisch, J. J.; Galle, J. E.; Kozima, S. J. Am. Chem.
Soc. 1986, 108, 379. (c) Budzelaar, P. H. M.; van der Kerk, S. M.; Krogh-
Jespersen, K.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 3960. (d) Eisch,
J. J.; Shafii, B.; Odom, J. D.; Rheingold, A. L. J. Am. Chem. Soc. 1990, 112,
1847. (e) Byun, Y.-G.; Saebo. S.; Pittman, C. U., Jr. J. Am. Chem. Soc. 1991,
113, 3689. (f) Sugihara, Y.; Yagi, T.; Murata, I.; Imamura, A. J. Am. Chem.
Soc. 1992, 114, 1479. (g) Salzner, U.; Lagowski, J. B.; Pickup, P. G.; Poirier,
R. A. Synth. Met. 1998, 96, 177. Recent reports on the boron-based π-electron
systems directed toward materials, see refs 4-7.
(4) (a) Yuan, Z.; Taylor, N. J.; Marder, T. B.; Williams, I. D.; Kurtz, S.
K.; Cheng, L.-T. J. Chem. Soc., Chem. Commun. 1990, 1489. (b) Yuan, Z.;
Taylor, N. J.; Sun, Y.; Marder, T. B.; Williams, I. D.; Cheng, L.-T. J.
Organomet. Chem. 1993, 449, 27. (c) Yuan, Z.; Taylor, N. J.; Ramachandran,
R.; Marder, T. B. Appl. Organomet. Chem. 1996, 10, 305.
(5) (a) Matsumi, N.; Naka, K.; Chujo, Y. J. Am. Chem. Soc. 1998, 120,
5112. (b) Matsumi, N.; Naka, K.; Chujo, Y. J. Am. Chem. Soc. 1998, 120,
10776.
(6) Corriu, R. J.-P.; Deforth, T.; Douglas, W. E.; Guerrero, G.; Siebert,
W. S. Chem. Commun. 1998, 963.
a Reagents and conditions: (i) n-BuLi (1.0-1.2 mol. amt.), Et2O; (ii)
BF3‚OEt2 (0.3 mol. amt.); (iii) BF3‚OEt2 (1.5 mol. amt.); (iv) 9,10-
dilithioanthracene (0.25 mol. amt.), generated from 5b with n-BuLi (2.2
mol. amt.) in Et2O; (v) Mes2BF (1.1 mol. amt.). Mol. amt. ) molar
amount.
can be handled without special care due to the protection of the
central boron atom by the bulky anthryl groups.
Among these compounds, the structure of 1 (see the Supporting
Information) has been determined by X-ray crystallography, which
reveals a completely planar geometry at the boron atom and a
propeller-like arrangement of the three anthryl groups with the
dihedral angles of about 53° between the central borane plane
and anthracene planes. Despite these relatively large dihedral
angles, π-conjugation through the central boron seems to still work
well in this skeleton, and the color of compound 1 is bright orange
and that of compounds 2-4 is bright red.
In solution, compounds 1-4 actually show unique UV-vis
absorption spectra.9 Their spectra are shown in Figure 2 and
the data are summarized in Table 1 together with those for
related compounds, di(9-anthryl)mesitylborane (7) and (9-anthryl)-
(7) (a) Noda, T.; Shirota, Y. J. Am. Chem. Soc. 1998, 120, 9714. (b) Noda,
T.; Ogawa, H.; Shirota, Y. AdV. Mater. 1999, 11, 283.
(8) (a) Leffler, J. E.; Watts, G. B.; Tanigaki, T.; Dolan, E.; Miller, D. S. J.
Am. Chem. Soc. 1970, 92, 6825. (b) DuPont, T. J.; Mills, J. L. J. Am. Chem.
Soc. 1975, 97, 6375. (c) Kaim, W.; Schulz, A. Angew. Chem., Int. Ed. Engl.
1984, 23, 615. (d) Schulz, A.; Kaim, W. Chem. Ber. 1989, 122, 1863. (e)
Okada, K.; Sugawa, T.; Oda, M. J. Chem. Soc., Chem. Commun. 1992, 74.
(9) UV absorption spectra of triarylboranes: (a) Ramsey, B. G.; Leffler, J.
E. J. Phys. Chem. 1963, 67, 2242. (b) Ramsey, B. G. J. Phys. Chem. 1966,
70, 611. (c) Miller, D. S.; Leffler, J. E. J. Phys. Chem. 1970, 74, 2571.
10.1021/ja994522u CCC: $19.00 © 2000 American Chemical Society
Published on Web 06/16/2000