10.1002/adsc.201900370
Advanced Synthesis & Catalysis
give acetonitrile radical D, which could be trapped by oximeanion
A to form the anion radical E.[15] Subsequently, anion radical E is
oxidized by C4F9I to give the product 2a and regenerate the
perfluobutyl radical C.
Rev. 2016, 117, 8754-8786; c) C.-L. Sun, Z.-J. Shi, Chem.
Rev. 2014, 114, 9219-9280.
[4] a) S.-R. Guo, P. S. Kumar, M. Yang, Adv. Synth. Catal. 2017,
359, 2-25; b) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang,
A. Singh, A. Lei, Chem. Rev. 2017, 117, 9016-9085; c) A.
Philips, A. Pombeiro, ChemCatChem, 2018, 10, 3354-3383;
d) C. Yeung, V. Dong, Chem. Rev. 2011, 111, 1215-1292; e)
C.-J. Li, Acc. Chem. Res. 2009, 42, 335-344.
In summary, we have developed new cross-dehydrogenative C-
O coupling of oximes with acetonitrile, ketones and esters. The
reaction occurred under mild conditions without transition metal
catalyst. Perfluorobutyl iodide was used as the unique oxidant.
The formation of the EDA complex between oxime anion and
perfluorobutyl iodide was proposed to enable the single electron
transfer process. The resulting perfluorobutyl radical abstracts the
hydrogen from acetonitrile, esters and ketones. The subsequent
radical coupling with oxime radical provides the final products.
The further applications of this strategy to other radical reactions
are currently under investigation.
[5] a) L. Bering, M. Vogt, F. Paulussen, A. Antonchick, Org. Lett.
2018, 20, 4077-4080; b) L. Bering, F. Paulussen, A.
Antonchick, Org. Lett. 2018, 20, 1978-1981; c) S.-S. Li, S.
Fu, L. Wang, L. Xu, J. Xiao, J. Org. Chem. 2017, 82, 8703-
8709; d) S. Maiti, T. Achar, P. Mai, Org. Lett. 2017, 19,
2006-2009; e) Y. Zhao, B. Huang, C. Yang, B. Li, B. Gou,
W. Xia, ACS Catal. 2017, 7, 2446-2451; f) R. Narayan, K.
Matcha, A. Antonchick, Chem. Eur. J. 2015, 21, 14678-
14693; g) M. Lai, Y. Li, Z. Wu, M. Zhao, X. Ji, P. Liu, X.
Zhang, Asian. J. Org. Chem. 2018, 7, 1118-1123; h) A. Batra,
P. Singh, K. N. Singh, Eur. J. Org. Chem. 2017, 26, 3739-
3762; i) J. Donald, R. Taylor, W. Petersen, J. Org. Chem.
2017, 82, 11288-11294; j) K. Lovato, L. Guo, Q. Xu, F. Liu,
M. Yousufuddin, D. Ess, L. Kürti, H. Gao, Chem. Sci. 2018,
9, 7992-7999; k) Y. Tian, C. Sun, R. Tan, Z.-Q. Liu, Green
Chem. 2018, 20, 588-592; l) R. Zhang, S. Jin, Q. Liu, S. Lin,
Z. Yan, J. Org. Chem. 2018, 83, 13030-13035.
[6] a) Ł. Woźniak, J. J. Murphy, P. Melchiorre, J. Am. Chem. Soc.
2015, 137, 5678-5681; b) M. Nappi, G. Bergonzini, P.
Melchiorre, Angew. Chem., Int. Ed. 2014, 53, 4921-4925; c)
G. Filippini, M. Nappi, P. Melchiorre, Tetrahedron 2015, 71,
4535-4542; d) E. Arceo, A. Bahamonde, G. Bergonzini, P.
Melchiorre, Chem. Sci. 2014, 5, 2438-2442; e) E. Arceo, I. D.
Jurberg, A. Álvarez-Fernández, P. Melchiorre, Nat.
Chem. 2013, 5, 750-756.
Experimental Section
To the mixture of 1-phenylethan-1-one oxime 1a (27.1 mg, 0.2
mmol) and Cs2CO3 (97.8 mg, 0.3 mmol) in anhydrous acetonitrile
(1.0 mL), nonafluoro-1-iodobutane (52 μL, 0.3 mmol) was added.
The resulting reaction mixture was stirred at room temperature for
6 hours. The reaction mixture was concentrated in vacuo, and the
residue was purified by flash column chromatography on silica
gel (petroleum/EtOAc) to give the compound 2a as a yellow
liquid (28.6 mg, 82%); 1H NMR (400 MHz, CDCl3): δ 7.69–7.64
(m, 2H), 7.42–7.36 (m, 2H), 4.82 (s, 2H), 2.27 (s, 3H); 13C NMR
(100 MHz, CDCl3): δ 158.33, 135.24, 129.96, 128.54, 126.38,
116.37, 58.94, 13.03; HRMS (ESI) calculated for C10H11N2O
(M+H)+: 175.0871, found: 175.0867.
[7] a) B. Liu, C.-H. Lim, G. M. Miyake, J. Am. Chem. Soc. 2017,
139, 13616-13619; b) B. Liu, C.-H. Lim, G. M. Miyake, J.
Am. Chem. Soc. 2018, 140, 12829-12835.
[8] a) H. Jiang, Y. He, Y. Cheng, S. Yu, Org. Lett. 2017, 19,
1240-1243; b) Y. Cheng, X. Yuan, J. Ma, S. Yu, Chem. Eur.
J. 2015, 21, 8355-8359.
[9] a) J. Zhang, Y. Li, R. Xu, Y. Chen, Angew. Chem., Int. Ed.
2017, 56, 12619-12623; b) Y. Li, J. Zhang, D. Li, Y. Chen,
Org. Lett. 2018, 20, 3296-3299.
Acknowledgements
We acknowledge the National Natural Science Foundation of
China (no. 21472248, 21772240) and the Guangzhou Science
Technology and Innovation Commission (201707010210) for the
financial support.
References
[10] a) A. Fawcett, J. Pradeilles, Y. Wang, T. Mutsuga, E. L.
Myers, V. K. Aggarwal, Science 2017, 357, 283-286; b) J.
Wu, L. He, A. Noble, V. K. Aggarwal, J. Am. Chem. Soc.
2018, 140, 10700-10704.
[1] For recently selected reviews, see: a) L. Ackermann, Chem.
Rev. 2011, 111, 1315-1345; b) X. Shang, Z.-Q. Liu, Chem.
Soc. Rev. 2013, 42, 3253-3260; c) C. Liu, D. Liu, A. Lei,
Acc. Chem. Res. 2014, 47, 3459-3470; d) C. Liu, J. Yuan, M.
Gao, S. Tang, W. Li, R. Shi, A. Lei, Chem. Rev. 2015, 115,
12138-12204; e) X.-Q. Chu, D. Ge, Z.-L. Shen, T.-P. Loh,
ACS Catal. 2018, 8, 258-271.
[2] For selected reviews, see: a) O. Baudoin, Chem. Soc. Rev.
2011, 40, 4902-4911; b) C. Liu, H. Zhang, W. Shi, A. Lei,
Chem. Rev. 2011, 111, 1780-1824; c) J. Xie, C. Pan, A.
Abdukader, C. Zhu, Chem. Soc. Rev. 2014, 43, 5245-5256;
d) S. A. Girard, T. Knauber, C.-J. Li, Angew. Chem., Int. Ed.
2014, 53, 74-100; e) Y. Qin, L. Zhu, S. Luo, Chem. Rev.
2017, 117, 9433-9520.
[11] a) Z. Xu, Q. Guo, H. Liu, M. Wang, R. Wang, Angew. Chem.,
Int. Ed. 2018, 57, 4747-4751; b) X. Tang, A. Studer, Angew.
Chem., Int. Ed. 2018, 57, 814-817; c) T. Chen, Y. Guo, K.
Sun, L. Wu, W. Liu, C. Liu, Y. Huang, Q. Chen, Org. Chem.
Front. 2018, 5, 1045-1048; d) J.-L. Liu, Z.-F. Zhu, F. Liu,
Org. Lett. 2018, 20, 720-723; e) Y. Li, T. Miao, P. Li, L.
Wang, Org. Lett. 2018, 20, 1735-1738; f) W. Lecroq, P.
Bazille, F. Morlet, M. Breugst, J. Lalevée, A.-C. Gaumont,
S. Lakhdar, Org. Lett. 2018, 20, 4164-4167; g) H.-Y. Tu, S.
Zhu, F.-L. Qing, L. Chu, Chem. Comm. 2018, 54, 12710-
12713; h) Y. Wang, J. Wang, G. Li, G. He, G. Chen, Org.
Lett. 2017, 19, 1442-1445.
[3] a) C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 2011, 111, 1293-
1314; b) J. He, M. Wasa, K. Chan, Q. Shao, J.-Q. Yu, Chem.
[12] Z. Pan, Z. Fan, B. Lu, J. Cheng, Adv. Synth. Catal. 2018, 360,
1761-1767.
4
This article is protected by copyright. All rights reserved.