(Figure S3†), in contrast to the Mo2 complexes with carboxylate-
or cyclic guanidinate-based ligands,6,12 where the halide anion or
the halogen atom of BF4 or PF6 coordinates to the axial site of
the Mo2 core. The cationic part of 6 is essentially the same as the
previously reported [3+][BF4],13 indicating that benzyl bromide acts
as an oxidant of 3. UV-vis spectral monitoring of the oxidation
reaction revealed that compound 3 was cleanly converted to com-
pound 6 with an isosbestic point.14 The activation of the carbon–
halogen bond by 3 proceeds through a single electron-transfer
mechanism.15 Recent studies on the mechanism of carbon–halogen
bond reductive cleavage of alkyl halides revealed that electron
transfer to alkyl halides did not produce anion-radical species
via an outer-sphere electron transfer mechanism.15d In addition,
the 2,4,6-triisopropylbenzoate-ligated cluster 1 possesses enough
space for coordination of the halogen atom to the axial site.6,12 We
thus presume that the carbon–halogen bond activation proceeds
through weak interaction of alkyl halides at the axial position
of the Mo2 core in solution. In the case of bulky amidinate
or guanidinate ligands, coordination of halide anions to the
axial site is unfavorable due to the steric repulsion. Accordingly,
the bromide anion was found as a counter anion for the
complex 6.
Based on the oxidation reaction of 3 by alkyl halides via a single
electron transfer, and the commonly accepted mechanism for the
low-valent metal catalyzed radical addition reaction,3 we propose
the catalytic cycle for the radical addition reaction as shown in
Scheme 2. At the first stage, the Mo2 complex 3 interacts with
alkyl halides to transfer a single electron from the Mo2(II,II) core
to yield the carbon radicals, ∑CR3, the halide anion, and Mo2(II,III)
species. The halide anion might weakly interact with the Mo2 core
or be positioned as a separated anion, and both species are in
equilibrium in solution. In the case of 6, formation of the ionic
species is more favorable due to the steric repulsion between the
bromide anion and the guanidinate ligand. Subsequent addition
of the carbon radical to alkenes generates Mo2(II,III) and new
radical species. Finally, one electron reduction of Mo2(II,III) by the
radical species results in the formation of a coupling product and
regeneration of the catalytically active species, Mo2(II,II). The low
catalytic activity of 3 for the radical addition reaction may be due
to the difficulty of the one-electron reduction of Mo2(II,III) species
by the radical, leading to deactivation by a recombination of the
carbon radicals.
a metal–metal multiple bond, where the choice of supporting
ligands plays an important role in the catalytic behavior. This is,
to the best of our knowledge, the first example of dinuclear group
6 metal complexes having metal–metal multiple bonds for radical
addition reactions via a single electron transfer process. Further
extension of the metal cluster chemistry having metal–metal
multiple bonds in the area of various catalytic transformations
is ongoing in our laboratory.
This work was supported by the Core Research for Evolutional
Science and Technology (CREST) program of the Japan Science
and Technology Agency (JST), Japan.
Notes and references
1 (a) D. P. Curran Comprehensive Organic Synthesis, Pergamon, New
York, 1992, p. 715; (b) G. J. Rowlands, Tetrahedron, 2009, 65, 8603;
(c) G. J. Rowlands, Tetrahedron, 2010, 66, 1593.
2 (a) J.-M. Save´ant, Acc. Chem. Res., 1993, 26, 455; (b) H. Lund, K.
Daasbjerg, T. Lund and S. U. Pedersen, Acc. Chem. Res., 1995, 28,
313; (c) E. R. Gaillard and D. G. Whitten, Acc. Chem. Res., 1996, 29,
292.
3 (a) F. Minisci, Acc. Chem. Res., 1975, 8, 165; (b) J. Iqbal, B. Bhatia
and N. K. Nayyar, Chem. Rev., 1994, 94, 519; (c) R. A. Gossage,
L. A. van de Kuil and G. van Koten, Acc. Chem. Res., 1998, 31,
423; (d) A. J. Clark, Chem. Soc. Rev., 2002, 31, 1; (e) T. Pintauer
and K. Matyjazewski, Chem. Soc. Rev., 2008, 37, 1087 and references
therein.
4 Recent reviews, see: (a) N. V. Tsarevsky and K. Matyjaszewski, Chem.
Rev., 2007, 107, 2270; (b) M. Ouchi, T. Terashima and M. Sawamoto,
Chem. Rev., 2009, 109, 4963; (c) K. Satoh and M. Kamigaito, Chem.
Rev., 2009, 109, 5120; (d) B. M. Rosen and V. Percec, Chem. Rev., 2009,
109, 5069 and references therein.
5 (a) F. A. Cotton, C. A. Murillo and R. A. Walton, Multiple Bonds
between Metal Atoms, Springer, New York, 2005; (b) F. A. Cotton, C.
Lin and C. A. Murillo, Acc. Chem. Res., 2001, 34, 759.
6 (a) F. A. Cotton, L. M. Daniels, C. A. Murillo and D. J. Timmons,
Chem. Commun., 1997, 1449; (b) J. A. M. Canich, F. A. Cotton, K. R.
Dunbar and L. R. Falvello, Inorg. Chem., 1988, 27, 804; (c) F. A.
Cotton, N. E. Gruhn, J. Gu, P. Huang, D. L. Lichtenberger, C. A.
Murillo, L. O. van Dorn and C. C. Wilkinson, Science, 2002, 298,
1971; (d) F. A. Cotton, L. M. Daniels, C. A. Murillo, D. J. Timmons and
C. C. Wilkinson, J. Am. Chem. Soc., 2002, 124, 9249; (e) F. A. Cotton,
P. Huang, C. A. Murillo and X. Wang, Inorg. Chem. Commun., 2003, 6,
121; (f) F. A. Cotton, J. P. Donahue, D. L. Lichtenberger, C. A. Murillo
and D. Villagra´n, J. Am. Chem. Soc., 2005, 127, 10808; (g) F. A. Cotton,
J. P. Donahue, N. E. Gruhn, D. L. Lichtenberger, C. A. Murillo, D. J.
Timmons, L. O. van Dorn, D. Villagra´n and X. Wang, Inorg. Chem.,
2006, 45, 201; (h) F. A. Cotton, C. A. Murillo, X. Wang and C. C.
Wilkinson, Dalton Trans., 2006, 4623; (i) F. A. Cotton, C. A. Murillo,
X. Wang and C. C. Wilkinson, Inorg. Chem., 2006, 45, 5493; (j) F. A.
Cotton, C. A. Murillo, X. Wang and C. C. Wilkinson, Dalton Trans.,
2007, 3943.
7 D. A. Lutterman, N. N. Degtyareva, D. H. Johnston, J. C. Gallucci,
J. L. Eglin and C. Turro, Inorg. Chem., 2005, 44, 5388.
8 (a) M. Ohashi, A. Shima, T. Ru¨ffer, H. Mizomoto, Y. Kaneda and K.
Mashima, Inorg. Chem., 2007, 46, 6702; (b) K. Mashima, A. Shima, K.
Nakao, A. Fukumoto, Y. Kaneda and Y. Kusumi, Inorg. Chem., 2009,
48, 1879.
9 Examples for bimetallic cluster catalyzed radical addition reac-
tions: (a) T. Susuki and J. Tsuji, J. Org. Chem., 1970, 35,
2982; (b) R. Davis, J. L. A. Durrant and N. M. S. Khazal,
J. Organomet. Chem., 1990, 386, 229; (c) M. A. Biddulph, R.
Davis and F. I. C. Wilson, J. Organomet. Chem., 1990, 387,
277; (d) R. Davis and F. I. C. Wilson, J. Organomet. Chem., 1990,
396, 55; (e) R. C. Kerber and B. R. Waldbaum, J. Organomet. Chem.,
1996, 513, 277.
Scheme 2 Plausible reaction mechanism.
10 Incorporation of alkyl halides to the polymer was confirmed by the
1H NMR spectra. The 1H NMR spectra of the resulting polymers are
shown in Supporting Information (Fig. S1 and S2†).
In summary, we developed radical addition and polymerization
reactions catalyzed by dinuclear group 6 metal complexes bearing
11 X-Ray diffraction data for 6 (CCDC 809907, see Figure S2†).
C88H88BrMo2N12O13, orthorhombic, Pna21, T = 113(2)K, No. of
9360 | Dalton Trans., 2011, 40, 9358–9361
This journal is
The Royal Society of Chemistry 2011
©