3255
the H-4 proton (3.30 Hz) as in the case of the H-3 proton (5.04 ppm), which has a small Jax/eq coupling
with the H-2 (3.23 Hz) and H-4 (3.10 Hz) protons.
Finally, epi-inositol 613 was obtained in nearly quantitative yields by catalytic debenzylation of inositol
derivative 5, or by reduction of inosose 4. The structure of epi-inositol 6 was confirmed by a comparison
of its analytical and spectroscopic data with those reported in the literature.14
In conclusion, our synthetic strategy offers a simple method to synthesize epi-inositol in a highly
stereoselective way and with a good chemical yield, by means of a process which leads to a single
stereoisomer, although it involves the formation of three new chiral centres. We are now engaged in
a program aimed at extending this synthetic scheme to other diastereoisomeric aldohexos-5-uloses,
with various kinds of functionalities, with the scope of establishing a general route to the biologically
interesting cyclitols, starting from readily available D-galactose derivatives.
Acknowledgements
This work was performed in the frame of the national relevance project ‘Chimica dei Composti
Organici di Interesse Biologico’ financed by MURST, Italy (PRIN-97), and the project ‘Metodologie di
Sintesi a basso impatto ambientale’ of Consorzio Interuniversitario Nazionale La Chimica per l’Ambiente
(INCA) granted to a loan of MURST, Italy, in accordance with law no. 488/92.
References
1. Part 12 of the series ‘Rare and complex saccharides from D-galactose and other milk-derived carbohydrates’. For Part 11
see Ref. 15.
2. Hudlicky, T.; Cebulak, M. Cyclitols and Their Derivatives. A Handbook of Physical, Spectral and Synthetic Data; VCH
Weinheim: New York, Cambridge, 1993; Ferrier, R. J.; Midleton, S. Chem. Rev. 1993, 93, 2779–2831; Daljko, P. I.; Sinaÿ,
P. Angew. Chem., Int. Ed. 1999, 38, 773–777.
3. Berridge, M. J. Nature 1989, 341, 197; Billington, D. C. The Inositol Phosphates–Chemical Synthesis and Biological
Significance; VCH Weinheim, 1993.
4. Kiddle, J. J. Chem. Rev. 1995, 95, 2189–2202; Tegge, W.; Ballou, C. E. Proc. Natl. Acad. Sci. USA. 1989, 86, 94–98.
5. (a) For allo, see: Mandel, M.; Hudlicky, T. J. Chem. Soc., Perkin Trans. 1 1993, 741–743; (b) for muco, see: Brammer Jr.,
L. E.; Hudlicky, T. Tetrahedron: Asymmetry 1998, 9, 2011–2014; (c) for neo, see: Riley, A. M.; Jenkins, D. J.; Potter, B. V.
L. Carbohydr. Res. 1998, 314, 277–281; (d) for scyllo, see: Husson, C.; Odier, L.; Vottéro, Ph. J. A. Carbohydr. Res. 1998,
307, 163–165; (e) for cis, see: Angyal, S. J.; Odier, L.; Tate, M. E. Carbohydr. Res. 1995, 266, 143–146; (f) for epi, see:
Posternak, T. Helv. Chim. Acta 1946, 29, 1991–1998.
6. (a) For L-arabino, see: Barili, P. L.; Berti, G.; Catelani, G.; D’Andrea, F. Gazz. Chim. Ital. 1992, 122, 135–142; (b) for D-
xylo, see: Barili, P. L.; Berti, G.; Catelani, G.; D’Andrea, F.; De Rensis, F. Tetrahedron 1997, 53, 8665–8674; (c) for L-lyxo,
see: Barili, P. L.; Berti, G.; Catelani, G.; D’Andrea, F.; De Rensis, F.; Goracci, G. J. Carbohydr. Chem. 1998, 17, 1167–1180;
(d) for L-ribo, see: Barili, P. L.; Bergonzi, M. C.; Berti, G.; Catelani, G.; D’Andrea, F.; De Rensis, F. J. Carbohydr. Chem.
1999, 18, 1037–1049.
7. (a) Ferrier, R. J. J. Chem. Soc., Perkin Trans. 1 1979, 1455–1458; (b) for a recent example, see: Takahashi, H; Kittaka, H;
Ikegami, S. Tetrahedron Lett. 1998, 39, 9703–9706.
8. Kiely, D. E.; Fletcher Jr., H. G. J. Org. Chem. 1969, 34, 1386–1390.
9. 2L-2,4-Di-O-benzyl-(2,3,5,6/4)-pentahydroxycyclohexanone 3: yield 60%, m.p. 110–112°C, white crystals from ethyl
25
acetate (found: C, 67.22; H, 6.44. C20H22O6 requires: C, 67.03; H, 6.29%); [α]D −69.23 (c 0.26, CHCl3); νmax (KBr)
3473, 3452, 3380, 1724, 1625 cm−1; δH (CD3CN, 500 MHz) 4.06 (dd, 1H, J3,4=3.1, J4,5=3.2 Hz, H-4), 4.46 (ddd, 1H,
J5,6=4.3, J3,5=2.3 Hz, H-5), 4.53 (1H, dd, J2,3=3.4, J2,6=1.3 Hz, H-2), 4.55 (ddd, 1H, H-3), 4.58 (dd, 1H, H-6), 4.56 and 4.83
(AB system, 2H, JAB=12 Hz, benzylic CH2), 4.68 and 4.77 (AB system, 2H, JAB=11.5 Hz, benzylic CH2), 7.37–7,46 (m,
10H, phenyl H); δC (CD3CN, 125 MHz) 72.58 (CH2), 73.25 (CH2), 75.96 (C-6), 76.75 (C-3), 76.85 (C-4), 77.46 (C-5),
81.63 (C-2), 126.65–139.07 (phenyl C), 207.52 (C_O).