LETTER
Uemura, T.; Takabe, K. Tetrahedron Lett. 2003, 44, 977.
Asymmetric Synthesis of 1,2,4-Trisubstituted Azetidines
1325
(d) Rai, A.; Yadav, L. D. S. Org. Biomol. Chem. 2011, 9,
8058. (e) Yadav, L. D. S.; Yadav, S.; Rai, V. K. Green
Chem. 2006, 8, 455.
(f) Cheng, Q.; Kiyota, H.; Yamaguchi, M.; Horiguchi, T.;
Oritani, T. Bioorg. Med. Chem. Lett. 2003, 13, 1075.
(g) Singh, S.; Crossley, G.; Ghosal, S.; Lefievre, Y.;
Pennington, M. W. Tetrahedron Lett. 2005, 46, 1419.
(5) (a) Bannon, A. W.; Decker, M. W.; Holladay, M. W.;
Curzon, P.; Donnelly-Roberts, D.; Puttfarcken, P. S.; Bitner,
R. S.; Diaz, A.; Dickenson, A. H.; Porsolt, R. D.; Williams,
M.; Arneric, S. P. Science 1998, 279, 77. (b) Suzuki, K.;
Shimada, K.; Nozoe, S.; Tanzawa, K.; Ogita, T. J. Antibiot.
1996, 49, 1284.
(6) Zoidis, G.; Fytas, C.; Papanastasiou, I.; Foscolos, G. B.;
Fytas, G.; Padalko, E.; De Clercq, E.; Naesens, L.; Neyts, J.;
Kolocouris, N. Bioorg. Med. Chem. 2006, 14, 3341.
(7) Nishiyama, S.; Kikuchi, Y.; Kurata, H.; Yamamura, S.;
Izawa, T.; Nagahata, T.; Ikeda, R.; Kato, K. Bioorg. Med.
Chem. Lett. 1995, 5, 2273.
(19) General Procedure for the Synthesis of Representative
Diethyl N,N-Disubstituted Phosphoramidates 3h,j
Reactions were carried out in undistilled toluene without any
precaution to exclude water. The aforementioned catalytic
salt A (0.04 mmol) was prepared from 9-amino-(9-deoxy)-
epi-hydroquinine (0.04 mmol, 13.0 mg) and 0.08 mmol (20
mg) of D-N-Boc-phenylglycine in toluene (2 mL) as reported
in the literature.14a After addition of α,β-unsaturated ketone
1 (0.2 mmol) to it, the mixture was stirred at 60 °C for 10
min. Then a solution of phosphoramidate 2 (0.2 mmol) was
added to the reaction mixture slowly with stirring at 60 °C,
and stirring was continued for 12–24 h which resulted in the
formation of aza-Michael adduct 3h,j as monitored by TLC.
The resulting mixture was diluted with toluene and filtered
on neutral Al2O3. The solvent was evaporated under reduced
pressure, and the product was purified by flash chroma-
tography on neutral Al2O3 (PE–CH2Cl2 = 6:4) to obtain pure
phosphoramidates 3h,j as white solids. Enantiomeric purity
of adducts were checked by chiral HPLC with a 250 × 4.6
mm, 5 chiral Eurocel column.
(8) (a) Ungureanu, I.; Klotz, P.; Schoenfelder, A.; Mann, A.
Chem. Commun. 2001, 958. (b) Ungureanu, I.; Klotz, P.;
Schoenfelder, A.; Mann, A. Tetrahedron Lett. 2001, 42,
6087. (c) Prasad, B. A. B.; Bisai, A.; Singh, V. K. Org. Lett.
2004, 6, 4829. (d) Yadav, V. K.; Sriramurthy, V. J. Am.
Chem. Soc. 2005, 127, 16366.
(9) (a) Michaud, T.; Chanet-Ray, J.; Chou, S.; Gelas, J.
Carbohydr. Res. 1997, 299, 253. (b) Marinetti, A.; Hubert,
P.; Genêt, J.-P. Eur. J. Org. Chem. 2000, 1815.
(10) (a) Hoshino, J.; Hiraoka, J.; Hata, Y.; Sawada, S.;
Yamamoto, Y. J. Chem. Soc., Perkin Trans. 1 1995, 693.
(b) Guanti, G.; Riva, R. Tetrahedron: Asymmetry 1995, 6,
2921. (c) Shi, M.; Jiang, K. J. Tetrahedron: Asymmetry
1999, 10, 1673.
Characterization Data of Representative Compounds
Compound 3h (R1 = R2 = Et, R3 = o-tolyl): white solid; yield
85%; mp 195–197 °C. IR (KBr): νmax = 3060, 2889, 1690,
1609, 1565, 1455, 1353, 1272, 1115, 742 cm–1. 1H NMR
(400 MHz, CDCl3): δ = 0.83 (t, J = 7.4 Hz, 3 H), 1.14 (q, J =
7.4 Hz, 2 H), 1.20 (t, J = 7.5 Hz, 6 H), 1.52 (m, 2 H), 2.35 (s,
3 H), 2.50 (t, J = 7.2 Hz, 3 H), 2.96 (dd, J = 12.9, 8.5 Hz, 1
H), 3.16 (dd, J = 12.9, 3.5 Hz, 1 H), 4.06 (q, J = 7.5 Hz, 4 H),
4.09 (m, 1 H), 6.61 (d, J = 8.1 Hz, 1 Hortho), 6.68–7.06 (m,
3 Harom). 13C NMR (100 MHz, CDCl3): δ = 9.4, 10.4, 14.5,
16.0, 30.0, 40.1, 46.2, 54.0, 62.6, 113.4, 117.5, 126.9, 127.8,
130.5, 144.0, 219.5 ppm. MS (EI): m/z = 355 [M+]. Anal.
Calcd for C18H30NO4P: C, 60.83; H, 8.51; N, 3.94. Found: C,
60.57; H, 8.63; N, 4.27. [α]D25 –115 (c 1, CHCl3). The ee was
determined to be 80% by HPLC on a chiral Eurocel column
[(250 × 4.6 mm, 5μ), λ = 225 nm, (i-PrOH–hexane = 10:90),
1 mL/min]; tR (minor) = 12.4 min, tR (major) = 14.2 min.
Compound 3j (R1 = Bn, R2 = Et, R3 = Ts): white solid; yield
92%; mp 178–179 °C. IR (KBr): νmax = 3054, 2992, 1692,
(11) (a) Barbas, C. F . III, Angew. Chem. Int. Ed. 2008, 47, 42.
(b) List, B. Chem. Commun. 2006, 819. (c) Marigo, M.;
Jørgensen, K. A. Chem. Commun. 2006, 2001.
(12) Bartoli, G.; Melchiorre, P. Synlett 2008, 1759.
(13) (a) Mayer, S.; List, B. Angew. Chem. Int. Ed. 2006, 45, 4193.
(b) Lacour, J.; Hebbe-Viton, V. Chem. Soc. Rev. 2003, 32,
373. (c) Llewellyn, D. B.; Arndtsen, B. A. Tetrahedron:
Asymmetry 2005, 16, 1789. (d) Dorta, R.; Shimon, L.;
Milstein, D. J. Organomet. Chem. 2004, 689, 751.
(e) Carter, C.; Fletcher, S.; Nelson, A. Tetrahedron:
Asymmetry 2003, 14, 1995. (f) Martin, N. J. A.; List, B.
J. Am. Chem. Soc. 2006, 128, 13368. (g) Zhou, J.; List, B.
J. Am. Chem. Soc. 2007, 129, 7498. (h) Wang, X.; List, B.
Angew. Chem. Int. Ed. 2008, 47, 1119.
(14) (a) Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli, F.;
Sambri, L.; Melchiorre, P. Org. Lett. 2007, 9, 1403.
(b) Carlone, A.; Bartoli, G.; Bosco, M.; Pesciaioli, F.; Ricci,
P.; Sambri, L.; Melchiorre, P. Eur. J. Org. Chem. 2007,
5492. (c) Ricci, P.; Carlone, A.; Bartoli, G.; Bosco, M.;
Sambri, L.; Melchiorre, P. Adv. Synth. Catal. 2008, 350, 49.
(d) Pesciaioli, F.; De Vincentiis, F.; Galzerano, P.;
Bencivenni, G.; Bartoli, G.; Mazzanti, A.; Melchiorre, P.
Angew. Chem. Int. Ed. 2008, 47, 8703.
(15) Brunner, H.; Bügler, J.; Nuber, B. Tetrahedron: Asymmetry
1995, 6, 1699.
(16) For a review on organocatalytic aza-Michael addition, see:
Enders, D.; Wang, C.; Liebich, J. X. Chem. Eur. J. 2009, 15,
11058.
(17) (a) Lu, X.; Deng, L. Angew. Chem. Int. Ed. 2008, 47, 7710.
(b) Luo, G.; Zhang, S.; Duan, W.; Wang, W. Synthesis 2009,
5641. (c) Sanjib, G.; Zhao, C.-G.; Ding, D. Org. Lett. 2009,
11, 2249.
(18) (a) Yadav, L. D. S.; Awasthi, C.; Rai, V. K.; Rai, A.
Tetrahedron Lett. 2007, 48, 8037. (b) Yadav, L. D. S.; Patel,
R.; Srivastava, V. P. Synlett 2008, 583. (c) Yadav, L. D. S.;
Srivastava, V. P.; Patel, R. Tetrahedron Lett. 2008, 49, 5652.
1605, 1580, 1455, 1372, 1337, 1263, 1154, 1130, 855 cm—1
.
1H NMR (400 MHz, CDCl3): δ = 0.78 (t, J = 7.4 Hz, 3 H),
1.23 (t, J = 7.5 Hz, 6 H), 2.37 (s, 3 H), 2.05 (q, J = 7.4 Hz, 2
H), 2.49 (dd, J = 12.9, 8.5 Hz, 1 H), 2.58 (dd, J = 12.9, 3.5
Hz, 1 H), 2.75 (dd, J = 13.4, 10.5 Hz, 1 H), 2.83 (dd, J = 13.4,
3.9 Hz, 1 H), 3.24 (m, 1 H), 4.16 (q, J = 7.5 Hz, 4 H), 7.08–
7.43 (m, 9 Harom). 13C NMR (100 MHz, CDCl3): δ = 8.4,
15.6, 23.3, 28.4, 35.8, 42.6, 44.7, 62.9, 124.4, 126.3, 128.2,
129.0, 129.9, 136.7, 138.0, 143.9, 218.9 ppm. MS (EI):
m/z = 481 [M+]. Anal. Calcd for C23H32NO6PS: C, 57.37; H,
6.70; N, 2.91. Found: C, 57.57; H, 6.97; N, 3.25. [a]D25 –120
(c 1, CHCl3). The ee was determined to be 82% by HPLC on
a chiral Eurocel column [(250 × 4.6 mm, 5μ), λ = 225 nm, (i-
PrOH–hexane = 10:90), 1 mL/min]; tR (minor) = 10.9 min,
tR (major) = 13.4 min.
(20) General Procedure for the Synthesis of Azetidines 4h,j
To a solution of adduct 3h or 3j (0.2 mmol) in THF was
added (R)-alpine borane (0.2 mmol), and the reaction
mixture was stirred at 60 °C for 42–48 h. A sat. aq NH4Cl
solution (4 mL) was added, and the resulting mixture was
extracted once with Et2O (5 mL) and then with CH2Cl2 (2 ×
5 mL), dried over anhyd MgSO4, filtered, and evaporated to
dryness. The crude product thus obtained was purified by
flash chromatography using a gradient mixture of EtOAc–
hexane as eluent to afford an analytically pure sample of 4h
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 1321–1326