3440
a small steric interaction, i.e. that the reaction undergoes control by dynamic kinetic resolution. There are
many papers on asymmetric Michael addition of a thiol to an α,β-unsaturated system;12 however, there
is no precedent for a synthetic method corresponding to the asymmetric Michael addition of hydrogen
sulfide like the one observed in the reaction of the trans-chalcones.
Scheme 3. Plausible transition states for sulfide 2
In conclusion, we have developed the first method for an asymmetric synthesis of the 1,3-mercapto
alcohols 3 from the α,β-unsaturated ketones 1 through the tandem Michael addition–MPV reduction
followed by elimination. An important feature of this method is that the α,β-unsaturated ketone 4 or the
sulfide 5 obtained together with 3 is able to be recycled for the preparation of the chiral reagent B.7 This
is characteristic of an asymmetric bifunctional group exchange reaction.
Acknowledgements
Partial financial support (Grant-in-Aid No. 09470489) for this research by the Ministry of Education,
Science and Culture, Japan, is gratefully acknowledged.
References
1. For reviews, see: (a) Wilds, A. L. Org. React. 1944, 2, 178–223. (b) de Graauw, C. F.; Peters, J. A.; van Bekkum, H.;
Huskens, J. Synthesis 1994, 1007–1017. (c) Takahashi, K.; Shibagaki, M.; Kuno, H.; Matsushita, H. Shokubai 1995, 37,
23–27, and references cited therein.
2. Chiral Grignard reagent: (a) Streitweiser Jr., A.; Wolfe, J. R.; Schaeffer, W. D. Tetrahedron 1959, 6, 338–344. (b) Foley,
W. M.; Welch, F. J.; La Combe, E. M.; Mosher, H. S. J. Am. Chem. Soc. 1959, 81, 2779–2784. (c) MacLeod, R.; Welch, F.
J.; Mosher, H. S. J. Am. Chem. Soc. 1960, 82, 876–880. (d) Burrows, E. P.; Welch, F. J.; Mosher, H. S. J. Am. Chem. Soc.
1960, 82, 880–885. (e) Birtwistle, J. S.; Lee, K.; Morrison, J. D.; Sanderson, W. A.; Mosher, H. S. J. Org. Chem. 1964, 29,
37–40. Chiral Aluminum alkoxide: (f) Doering, W. von E.; Young, R. W. J. Am. Chem. Soc. 1950, 72, 631. (g) Jackman,
L. M.; Mills, J. A.; Shannon, J. S. J. Am. Chem. Soc. 1950, 72, 4814–4815. (h) Newman, P.; Rutkin, P.; Mislow, K. J.
Am. Chem. Soc. 1958, 80, 465–473. (i) Nasipuri, D.; Sarker, G. J. Indian Chem. Soc. 1967, 44, 165–166. (j) Nasipuri, D.;
Sarker, G.; Ghosh C. K. Tetrahedron Lett. 1967, 5189–5192. (k) Fles, D.; Majhofer, B.; Kovac, M. Tetrahedron 1968, 24,
3053–3057.
3. (a) Zhou, W. S.; Zhou, X. M.; Ni, Y. Acta Chimica Sinica 1984, 42, 706–709. (b) Zhou, W. S.; Wang, Z. Q.; Zhang, H.; Fei,
R. Y.; Zhuang, Z. P. Acta Chimica Sinica 1985, 43, 168–173. (c) Ishihara, K.; Hanaki, N.; Yamamoto, H. J. Am. Chem. Soc.
1991, 113, 7074–7075. (d) Ishihara, K.; Hanaki, N.; Yamamoto, H. Synlett 1993, 127–129. (e) Molander, G. A.; McKie, J.
A. J. Am. Chem. Soc. 1993, 115, 5821–5822. (f) Baramee, A.; Chaichit, N.; Intawee, P.; Thebtaranonth, C.; Thebtaranonth,
Y. J. Chem. Soc., Chem. Commun. 1991, 1016–1017. (g) Fujita, M.; Takarada, Y.; Sugimura, T.; Tai, A. J. Chem. Soc.,
Chem. Commun. 1997, 1631–1632.
4. Evans, D. A.; Nelson, S. G.; Gagne, M. R.; Muci, A. R. J. Am. Chem. Soc. 1993, 115, 9800–9801.
5. (a) Nishide, K.; Shigeta, Y.; Obata, K.; Node, M. J. Am. Chem. Soc. 1996, 118, 13103–13104. (b) Node, M.; Nishide, K.;
Shigeta, Y.; Shiraki, H.; Obata, K. ibid. 2000, 122, J. Am. Chem. Soc. 2000, 122, 1927–1936.
6. (a) Eliel, E. L.; Lynch, J. E. Tetrahedron Lett. 1981, 22, 2855–2858. (b) Lynch, J. E.; Eliel, E. L. J. Am. Chem. Soc. 1984,
106, 2943–2948. (c) Eliel, E. L.; Lynch, J. E.; Kume, F.; Frye, S. V. Org. Synth. 1987, 65, 214–223.