V. P. Sandanayaka et al. / Tetrahedron Letters 42 (2001) 4605–4607
4607
O
O
O
S
O
S
O
O
OCH2CCCH3
OCH2CCCH3
b
a
HOHN
HOHN
8
N
N
Boc
R3
14
15: R3 = H
16: R3 = CH2C6H4CO2CH3
Scheme 3. (a) i. LiOH, THF, MeOH, H2O (98%); ii. NH2OH.HCl, Et3N, DMF, (COCl)2 (61%); (b) i. 4N HCl in dioxane,
CH2Cl2; ii. CH3CO2C6H4CH2Br, Et3N.
Natchus, M. G.; Pikul, S. PCT Int. Appl. WO Patent
9,906,340, 1998.
2. Solomon, D. M.; Grace, M. J.; Fine, J. S.; Bober, L. A.;
Sherlock, M. H. US Patent 5,939,431, 1997.
3. Branca, Q.; Heitz, M. P.; Neidhart, W.; Stadler, H.;
Vieira, E.; Wostl, W. US Patent 5,393,875, 1995.
4. Maravetz, L. L.; Crawford, S. D.; Theodoridis, G. PCT
Int. Appl. WO Patent 9,828,280, 1997.
5. Yamanaka, E.; Narushima, M.; Inukai, K.; Sakai, S.
Chem. Pharm. Bull. 1986, 34, 77.
and Et3N. However, the selective acylation of nitrogen
using CH3COCl/Et3N conditions did not proceed well,
and led to a mixture of products. This alternative
procedure bears the potential to use as a combinatorial
route by attaching the hydroxyl amine moiety to a solid
phase linker.13
In summary, we have developed an efficient protocol
for the synthesis of biologically important piperidine
containing a-sulfonyl hydroxamic acid derivatives. This
method was employed to make a diverse array of MMP
and TACE inhibitors, which will be described together
with their biological data elsewhere. This methodology,
which utilizes direct enolate sulfonylation, should find
general application not only for a-sulfonyl hydroxam-
ates but also for other sulfone containing target
molecules.
6. Mach, R. H.; Kung, H. F.; Jungwiwattanaporn, P.; Guo,
Y.-Z Tetrahedron Lett. 1989, 30, 4069.
7. Stoit, A. R.; Pandit, U. K. Tetrahedron 1985, 41, 3345.
8. Hirsh, E.; Hunig, S.; Reibig, H.-U. Chem. Ber. 1982, 115,
399.
9. Kende, A. S.; Mendoza, J. S. J. Org. Chem. 1990, 55,
1125.
10. Trost, B. M.; Ghadiri, M. R. Bull. Chem. Soc. Jpn. 1988,
61, 107.
11. Ichihara, J.; Matsuo, T.; Hanafusa, T.; Ando, T. J.
Acknowledgements
Chem. Soc., Chem. Commun. 1986, 793.
12. Preparation of 8: To a solution of LDA (70 mmol) in
THF at −78°C, was added a solution of 6 (15.5 g, 64
mmol) in THF (300 mL) and the resulting mixture was
stirred for 0.5 h at that temperature. A solution of 4 (14.6
g, 64 mmol) in THF (150 mL) was then added, and the
resulting mixture was stirred for 5 h at rt, quenched with
saturated aqueous NH4Cl solution, and extracted with
EtOAc. The organic layer was washed with brine and
dried over anhyd. Na2SO4. The crude product was
purified by silica-gel chromatography to obtain 8 (24.5 g,
85%) as a white solid; IR: 2978, 2242, 1740, 1697, 1594,
1418, 1301, 1002, 908 cm−1.1H NMR (300 MHz, CDCl3):
l 1.44 (s, 9H), 1.87 (m, 3H), 1.98 (m, 2H), 2.32 (m, 2H),
2.62 (m, 2H), 3.74 (s, 3H), 4.17 (m, 2H), 4.74 (m, 2H),
7.09 (d, 2H, J=7.2 Hz), 7.71 (d, 2H, J=7.2 Hz). 13C
NMR (75 MHz, CDCl3): l 4.0, 28.2, 28.7, 53.5, 57.2,
72.9, 73.1, 80.5, 85.4, 115.3, 127.0, 132.6, 154.7, 162.9,
167.8; HRMS: calcd for C22H29NO7S (M+Na) 474.1557.
Found 474.1547.
We thank Drs. J. Skotnicki, J. Ellingboe and T. Man-
sour for their support of this work.
References
1. (a) Levin, J. I.; Venkatesan, A. M.; Chen, J. M.; Zask,
A.; Sandanayaka, V. P. PCT Int. Appl. WO Patent
0,044,723, 2000; (b) Dack, K. N.; Whitlock, G. A. PCT
Int. Appl. WO Patent 9,929,667, 1998; (c) Barta, T. E.;
Becker, D. P.; Boehm, T. L.; De Crescenzo, G. A.;
Villamil, C. I.; McDonald, J. J.; Freskos, J. N.; Getman,
D. P. PCT Int. Appl. WO Patent 9,925,687, 1999; (d)
Groneberg, R. D.; Neuenschwander, K. W.; Djuric, S.
W.; McGeehan, G. M.; Burns, C. J.; Condon, S. M.;
Morrisette, M. M.; Matthew, M.; Salvino, J. M.; Scotese,
A. C.; Ullrich, J. W. PCT Int. Appl. WO Patent
9,724,117, 1997; (e) Almstead, N. G.; Bookland, R. G.;
Taiwo, Y. O.; Bradley, R. S.; Bush, R. D.; De, B.;
13. Floyd, C. D.; Lewis, C. L.; Patel, S. R.; Whittaker, M.
Tetrahedron Lett. 1996, 37, 8045.
.