3236
J. Am. Chem. Soc. 1999, 121, 3236-3237
Table 1. Asymmetric Allylation of R-Acetamido-â-ketoesters 1a
Catalytic Asymmetric Allylation of Prochiral
Nucleophiles, r-Acetamido-â-ketoesters
entry
R1 (1)
R2 (2) time, h product yield, %b ee, %c
1
2
3
4
5
6
7
8
9
Me (1b)
Ph (1c)
Me (1b)
Ph (1c)
Et (1a)
Me (1b)
Ph (1c)
H (2a)
H (2a)
Pr (2b)
Pr (2b)
Ph (2c)
Ph (2c)
Ph (2c)
24
24
24
48
4
2
48
2
3b
3c
3d
3e
3f
3g
3h
3i
84
92
96
40
87
87
71
86
85
76
80
87
89
91
94
95
92
91
Ryoichi Kuwano and Yoshihiko Ito*
Department of Synthetic Chemistry and
Biological Chemistry, Graduate School of Engineering
Kyoto UniVersity, Sakyo-ku, Kyoto 606-8501, Japan
i-Bu (1d) Ph (2c)
i-Pr (1e) Ph (2c)
ReceiVed January 4, 1999
4
3j
a All reactions were carried out in toluene (0.2 M) at -30 °C. The
ratio of 1:2:t-BuOK:[Pd(π-allyl)Cl]2:(R)-BINAP was 100:150:120:1:
1.05 unless otherwise noted. b Isolated yield by PTLC. c Determined
by HPLC analysis with chiral stationary-phase column.
Catalytic asymmetric allylation through a chiral π-allylpalla-
dium(II) complex has been intensively studied.1 Most of the
successful examples introduce a chiral center on an allylic sub-
strate.2 The enantioselective electrophilic attack of a π-allyl-
palladium(II) to a stabilized prochiral nucleophile is not facile to
be controlled by a chiral ligand on the palladium atom,3,4 which
is at the opposite side of the π-allyl carbon structure from the
approaching nucleophile (Figure 1).5 Some devices have led to
The first attempt for asymmetric allylation of methyl 2-(N-
acetylamino)-3-oxopentanoate (1a) with allyl methyl carbonate
was carried out in THF at 0 °C in the presence of the palladium
catalyst generated from Pd2(dba)3‚CHCl3 and (R)-BINAP.9 The
reaction was completed in 5 h to give the corresponding allylation
product (3a) with 45% ee in 97% yield.10,11 The enantioselectivity
was improved up to 72% ee by the use of allyl acetate and t-BuOK
in toluene at -30 °C for 30 h in the presence of the palladium
complex catalyst generated from [Pd(π-allyl)Cl]2 and (R)-BINAP,
giving 3a in 76% yield (Scheme 1).
Figure 1.
the high enantioselective allylation of carbon nucleophiles, for
example, (i) by the use of a bimetallic catalyst system for
allylation with chiral rhodium(I) enolate of R-cyanopropionates,6
(ii) by the use of a chiral bidentate ligand with wide bite angle
for asymmetric allylation of cyclic â-ketoesters,7 which may
induce effective transmission of the ligand chirality.
Scheme 1
Herein, we wish to report a highly enantioselective allylation
(up to 95% ee) of prochiral nucleophiles, R-acetamido-â-
ketoesters 1, catalyzed by the chiral BINAP-palladium complex.
The R-acetamido-â-ketoesters are new carbon nucleophiles, which
undergo palladium-catalyzed allylations to furnish R-allyl-R-
acetamido-â-ketoesters 3 having a quaternary stereogenic center
at the R-carbon.8
(1) For reviews, see: (a) Hayashi, T. In Catalytic Asymmetric Synthesis;
Ojima, I., Ed.; VCH Publishers: New York, 1994; pp 325-365. (b) Trost, B.
M.; Van Vranken, D. L. Chem. ReV. 1996, 96, 395-422. (c) Williams, J. M.
J. Synlett 1996, 705-710. (d) Lu¨bbers, T.; Metz, P. In StereoselectiVe
Synthesis; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.;
Thieme: Stuttgart, 1996; Vol. 4, pp 2371-2473.
(2) For recent examples, see: (a) Trost, B. M. Acc. Chem. Res. 1996, 29,
355-364. (b) von Matt, P.; Pfalz, A. Angew. Chem., Int. Ed. Engl. 1993, 32,
566-568. (c) Togni, A.; Breutel, C.; Schnyder, A.; Spindler, F.; Landert, H.;
Tijani, A. J. Am. Chem. Soc. 1994, 116, 4062-4066. (d) Kudis, S.; Helmchen,
G. Angew. Chem., Int. Ed. Engl. 1998, 37, 3047-3050.
(3) (a) Fiaud, J.-C.; De Gournay, A. H.; Lacheve´que, M.; Kagan, H. B. J.
Organomet. Chem. 1978, 154, 175-185. (b) Hayashi, T.; Kanehira, K.;
Tsuchiya, H.; Kumada, M. J. Chem. Soc., Chem. Commun. 1982, 1162-
1164. (c) Ito, Y.; Sawamura, M.; Matsuoka, M.; Matsumoto, Y.; Hayashi, T.
Tetrahedron Lett. 1987, 28, 4849-4852. (d) Hayashi, T.; Kanehira, K.;
Hagihara, T.; Kumada, M. J. Org. Chem. 1988, 53, 113-120. (e) Sawamura,
M.; Nagata, H.; Sakamoto, H.; Ito, Y. J. Am. Chem. Soc. 1992, 114, 2586-
2592. (f) Sawamura, M.; Nakayama, Y.; Tang, W.-M.; Ito, Y. J. Org. Chem.
1996, 61, 9090-9096. (g) Genet, J.-P.; Ferroud, D.; Juge, S.; Montes, J. R.
Tetrahedron Lett. 1986, 27, 4573-4576. (h) Genet, J.-P.; Juge, S.; Montes,
J. R.; Gaudin, J. M. J. Chem. Soc., Chem. Commun. 1988, 718-719. (i) Genet,
J.-P.; Juge, S.; Achi, S.; Mallart, S.; Montes, J. R.; Levif, G. Tetrahedron
1988, 44, 5263-5275.
The allylations of R-acetamido-â-ketoesters 1 with some allylic
substrates 2 in toluene at -30 °C were examined, as summarized
in Table 1. Various optically active allylation products 3b-j were
obtained with 77-95% ee in high yields by the use of the (R)-
BINAP-palladium catalyst. Noteworthy is that the allylation of
1 with γ-substituted allylic substrates 2b and 2c provided
selectively the corresponding 3d-j without being accompanied
by the regio- and (Z)-geometrical isomers. The enantioselectivities
depended significantly upon substituent at the γ-carbon of 2,
(8) For catalytic asymmetric syntheses of R-alkylated R-amino acids with
high enantiomeric excess, see: (a) Ito, Y.; Sawamura, M.; Shirakawa, E.;
Hayashizaki, K.; Hayashi, T. Tetrahedron 1988, 44, 5253-5262. (b) Ruble,
J. C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 11532-11533 and ref 4b.
(9) (R)-2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl: Miyashita, A.; Ya-
suda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem.
Soc. 1980, 102, 7932-7934.
(10) Representative results with other chiral ligands in THF were as
follows: (+)-2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)-
butane (DIOP: 2% ee), (2S,3S)-2,3-bis(diphenylphosphino)butane (CHIRA-
PHOS: 1% ee), (R)-N,N-dimethyl-1-[(S)-1′,2-bis(diphenylphosphino)ferrocenyl]-
ethylamine (BPPFA: 13% ee), (R,R)-2,2′′-bis[(S)-1-(diphenylphosphino)ethyl]-
1,1′′-biferrocene (PhTRAP: 21% ee), (1R,2R)-bis[N-(2′-diphenylphosphino)-
benzoylamino]cyclohexane (no reaction), (S)-2-[2-(diphenylphosphino)phenyl]-
4-(phenyl)oxazoline (1% ee).
(4) (a) Baldwin, I. C.; Williams, J. M. J. Tetrahedron: Asymmetry 1995,
6, 679-682. (b) Trost, B. M.; Ariza, X. Angew. Chem., Int. Ed. Engl. 1997,
36, 2635-2637.
(5) (a) Trost, B. M.; Weber, L.; Strege, P. E.; Fullerton, T. J.; Dietsche, T.
J. J. Am. Chem. Soc. 1978, 100, 3416-3426. (b) Hayashi, T.; Konishi, M.;
Kumada, M. J. Chem. Soc., Chem. Commun. 1984, 107-108. (c) Hayashi,
T.; Yamamoto, A.; Ito, Y. J. Organomet. Chem. 1988, 338, 261-264.
(6) Sawamura, M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309-
3310.
(11) Toluene was superior to THF, giving 56% ee of 3a. The enantiose-
lectivities of 3a in some other solvents were as follows: Et2O (47% ee), CH2-
Cl2 (31% ee), i-PrOH (40% ee).
(7) Trost, B. M.; Radinov, R.; Grenzer, E. M. J. Am. Chem. Soc. 1997,
119, 7879-7880.
10.1021/ja9900104 CCC: $18.00 © 1999 American Chemical Society
Published on Web 03/19/1999