M. I. Dawson et al. / Bioorg. Med. Chem. Lett. 10 (2000) 1311±1313
1313
Acknowledgements
Support by the USPHS NCI Program Project Grant
CA51993 (to M.I.D., J.A.F., and X.Z.) is gratefully
acknowledged.
References and Notes
1. Loeliger, P.; Bollag, W.; Mayer, H. Eur. J. Med. Chem.-
Chim. Ther. 1980, 15, 9.
2. Dawson, M. I.; Chan, R. L.-S.; Derdzinski, K.; Hobbs, P.
D.; Chao, W.; Schi, L. J. J. Med. Chem. 1983, 26, 1653.
3. Lehmann, J. M.; Dawson, M. I.; Hobbs, P. D.; Husmann,
M.; Pfahl, M. Cancer Res. 1991, 51, 4804.
4. Nagpal, S.; Patel, S.; Jacobe, H.; DiSepio, D.; Ghosn, C.;
Malhotra, M.; Teng, M.; Duvic, M.; Chandraratna, R. A. J.
Invest. Dermatol. 1997, 109, 91.
5. Shroot, B.; Michel, S. J. Am. Acad. Dermatol. 1997, 36, S96.
6. Mangelsdorf, D. J.; Umesono, K.; Evans, R. M. In The
Retinoids. Biology, Chemistry, and Medicine; Sporn, M. B.;
Roberts, A. B.; Goodman, D. S., Eds.; Raven: New York,
1994; pp 319±350.
Scheme 1. Synthesis of TTNPB2 (3): (a) 2,5-dimethyl-2,5-dichlorohex-
ane (ref 12), Cl(CH2)2Cl, AlCl3, 0 ꢀC: 6-(3-bromophenyl)-1,2,3,4-tetra-
hydro-1,1,4,4-tetramethylnaphthalene (11) (97%); (b) [Pd[P(C6H5)3]4,
anhyd DME], 4-carbethoxyphenylboronic acid (ref 12), EtOH; aq
Na2CO3, re¯ux: ethyl 4-[3-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-
naphthalenyl)phenyl]benzoate (12) (79%); (c) KOH, 75% aq MeOH,
(70 ꢀC); (1 N HCl): 3 (99%). Synthesis of MM11391 (9); (d) 13 (ref 15),
NH2OHꢁ HCl, NaOAc, MeOH, 70ꢀC, 15 h; aq HCl (51%). (See ref 16
for mp and spectral data.).
7. Nagy, L.; Thomazy, V. A.; Shipley, G. L.; Fesus, L.;
Lamph, W.; Heyman, R. A.; Chandraratna, R. A. S.; Davies,
P. J. A. Mol. Cell. Biol. 1995, 15, 3540.
8. Bissonnette, R. P.; Brunner, T.; Lazarchik, S. B.; Yoo, N.
J.; Boehm, M. F.; Green, D. R.; Heyman, R. A. Mol. Cell.
Biol. 1995, 15, 5576.
9. Wu, Q.; Dawson, M. I.; Zheng, Y.; Hobbs, P. D.; Agadir,
A.; Jong, L.; Li, Y.; Liu, R.; Lin, B.; Zhang, X.-K. Mol. Cell.
Biol. 1997, 17, 6598.
Table 2. Eects of 1 mM all-trans-retinoic acid (trans-RA), 9-cis-
RA, TTNBP2, MM11387, and MM11391 on the growth of retinoid-
sensitive T-47D and ZR-75-1 and retinoid-resistant MDA-MB-231
breast cancer cells after 10 daysa
Cell numbers (% relative to nontreated control)
10. Li, Y.; Dawson, M. I.; Agadir, A.; Li, M.-O.; Hobbs, P.
D.; Zhang, X. Int. J. Cancer 1998, 75, 88.
Retinoid
T-47D
ZR-75-1
MDA-MB-231
11. Chao, W.; Hobbs, P. D.; Jong, L.; Zhang, X.; Dawson,
M. I. Cancer Lett. 1997, 115, 1.
12. Jong, L.; Lehmann, J. M.; Hobbs, P. D.; Harlev, E.; Hu-
man, J. C.; Pfahl, M.; Dawson, M. I. J. Med. Chem. 1993, 36,
2605.
13. Canan Koch, S. S.; Dardashti, L. J.; Cesario, R. M.;
Croston, G. E.; Boehm, M. F.; Heyman, R. A.; Nazdan, A.
M. J. Med. Chem. 1999, 42, 742.
14. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
15. Kagechika, H.; Kawachi, E.; Hashimoto, Y.; Shudo, K. J.
Med. Chem. 1989, 32, 834.
16. Characterization data, 11: white solid, mp 78±80 ꢀC (hex-
Control
trans-RA
9-cis-RA
TTNPB2 (3)
MM11387 (4)
MM11391 (9)
100Æ4
39Æ2*
35Æ3*
32Æ4*
35Æ5*
23Æ4*
100Æ3
70Æ4*
59Æ5*
47Æ4*
49Æ1*
42Æ3*
100Æ4
94Æ2
69Æ2*
80Æ5*
75Æ5*
65Æ4*
aCells were cultured at 37 ꢀC in medium containing 10% fetal bovine
serum and either 1.0 mM retinoid or Me2SO vehicle alone, with med-
ium and retinoid solution replaced every 48 h. Cell numbers were
determined using the MTT assay.9 Results (% growth) represent the
average of three experiments Æ the standard error and are statistically
signi®cant (*) relative to the control (P< 0.001).
ane); Rf 0.45 (hexane); IR (KBr) 2956, 1591, 1551, 1469, 1386,
1
1361, 793 cm
;
1H NMR (300 MHz, CDCl3) d 1.32 (s, 6,
CMe2), 1.34 (s, 6, CMe2), 1.72 (s, 4, CH2CH2), 7.28 (dd, J=7.8,
7.8 Hz, 1, ArH), 7.31 (dd, J=2.0, 8.1 Hz, 1, ArH), 7.38 (d,
J=8.1 Hz, 1, ArH), 7.47 (m, 3, ArH), 7.70 (dd, J=1.7, 1.7 Hz,
1, ArH). 12: White solid, mp 148±149 ꢀC (CH2Cl2/hexane); Rf
0.35 (50% CH2Cl2/hexane); IR (KBr) 2956, 1712, 1272, 1102,
respectively, for trans-RA after treatment for seven days
at 37 ꢀC in medium containing 10% fetal bovine serum
with viable cell numbers determined spectro-
photometrically. After 10 days, growth inhibition by 1
mM TTNPB2, MM11387, or MM11391 on retinoid-
sensitive ZR-75-1 and T-47D breast cancer cells or on
retinoid-insensitive MDA-MB-231 breast cancer cells
was comparable to or greater than that of 1 mM trans-
RA or 9-cis-RA (see Table 2).
1
771 cm 1; H NMR (300 MHz, CDCl3) d 1.33 (s, 6, CMe2),
1.35 (s, 6, CMe2), 1.42 (t, J=7.1 Hz, 3, CO2CH2CH3), 1.73 (s,
4, CH2CH2), 4.41 (q, J=7.1 Hz, 2, CO2CH2CH3), 7.40 (br s, 2,
ArH), 7.56 (m, 4, ArH), 7.71 (d, J=8.5 Hz, 2, ArH), 7.79 (dd,
J=1.4, 1.4 Hz, 1, ArH), 8.13 (d, J=8.5 Hz, 2, ArH). 3: White
crystalline solid, mp 232±233 ꢀC (CH2Cl2/hexane); IR (KBr)
1
2955, 1685, 1609, 1422, 1298, 771 cm 1; H NMR (300 MHz,
CDCl3) d 1.34 (s, 6, CMe2), 1.36 (s, 6, CMe2), 1.74 (s, 4,
CH2CH2), 7.41 (br s, 2, ArH), 7.58 (m, 4, ArH), 7.75 (d,
J=8.6 Hz, 2, ArH), 7.81 (dd, J=1.4, 1.4 Hz, 1, ArH), 8.21 (d,
The teraryl scaold of TTNPB2 is suitable for combi-
natorial analogue synthesis using Suzuki-type palladium-
catalyzed biaryl-couplings14 to introduce 1,3-disubstituted
aryl or heterocyclic ring bridging groups. The syntheses of
TTNPB2 and MM11391 are shown in Scheme 1 and
described in the accompanying legend. MM11387,
MM11388, MM11395, MM11396, and MM11176, the
structures of which are shown in Table 1, were readily
prepared using similar methodologies.
J=8.6 Hz, 2, ArH). 9: White solid; IR (KBr) 2900±3500, 1700,
1
1614, 1460, 1293, 1020, 829 cm
;
1H NMR (300 MHz,
DMSO-d6) d 1.16, 1.19, 1.21 (3s, 12, 2 CMe2), 1.61 (s, 4,
CH2CH2), 2.89 (dd, J=14, 9 Hz, 1, CH2CH anti to Ar), 3.18
(dd, J=14, 7 Hz, 1, CH2CH syn to Ar), 4.25 (m, 1, CH2CH),
7.2±7.3 (dd, 3, NapH), 7.35 (d, J=9 Hz, 2, ArH meta to
CO2H), 7.38 (d, J=9 Hz, 2, ArH ortho to CO2H).