Pseudopeptides
4510 4522
Sintetici Bioattivi∫) and CNR for financial support. Politecnico di Milano is
gratefully acknowledged for fellowships to A.V. and F.B.
Y. Inoue, C. Fukaya, M. Nakajima, H. Fukuyama, T. Imada, N.
Nakamura, Bioorg. Med. Chem. Lett. 1998, 8, 919 924 and references
therein; f) R. V. Hoffman, J. Tao, Tetrahedron Lett. 1998, 39, 4195
4198; g) P. A. Bartlett, A. Otake, J. Org. Chem. 1995, 60, 3107 3111;
h) L. G. Boros, B. Decorte, R. H. Gimi, J. T. Welch, Y. Wu, R. E.
Handschumacher, Tetrahedron Lett. 1994, 35, 6033 6036; i) L.
Revesz, C. Briswalter, R. Heng, A. Leutwiler, R. Mueller, H.-J.
Wuethrich, Tetrahedron Lett. 1994, 35, 9693 9696; j) R. P. Robinson,
K. M. Donahue, J. Org. Chem. 1992, 57, 7309 7314; k) B. Bilgicer, A.
Fichera, K. Kumar, J. Am. Chem. Soc. 2001, 123, 4393 4399; l) Y.
Tang, G. Ghirlanda, N. Vaidehi, J. Kua, D. T. Mainz, W. A. Goddard,
W. F. DeGrado, D. A. Tirrell, Biochemistry 2001, 40, 2790 2796; m) F.
Bordusa, C. Dahl, H.-D. Jakubke, K. Burger, B. Koksch, Tetrahedron:
Asymmetry 1999, 10, 307 313.
[1] A. Loffet, J. Pept. Sci. 2002, 8, 1 7.
[2] a) G. L. Olson, D. R. Bolin, M. P. Bonner, M. Bˆs, C. M. Cook, D. C.
Fry, B. J. Graves, M. Hatada, D. E. Hill, M. Kahn, V. S. Madison, V. K.
Rusiecki, R. Sarabu, J. Sepinwall, G. P. Vincent, M. E. Voss, J. Med.
Chem. 1993, 36, 3039 3049; b) J. Gante, Angew. Chem. 1994, 106,
1780 1802; Angew. Chem. Int. Ed. Engl. 1994, 33, 1699 1720; c) D.
Leung, G. Abbenante, D. P. Fairlie, J. Med. Chem. 2000, 43, 305 341.
[3] a) M. Goodman, M. Chorev, Acc. Chem. Res. 1979, 12, 1 7; b) M.
Chorev, C. G. Willson, M. Goodman, J. Am. Chem. Soc. 1977, 99,
8075 8076; c) M. Chorev, M. Goodman, Acc. Chem. Res. 1993, 26,
266 273; d) M. Chorev, M. Goodman, Trends Biotechnol. 1995, 13,
438 445; e) M. D. Fletcher, M. M. Campbell, Chem. Rev. 1998, 98,
763 795. The idea of retropeptides originates from the fact that
peptides and proteins, like other biopolymers, have a direction and
therefore are inherently non-palindromic. The sense of direction
conventionally proceeds from the amino terminus (which is written on
the left, see Figure 1) to the carboxy terminus (written on the right).
[4] The retro- and retro-inverso peptide concepts are finding increasing
applications in medicinal chemistry. For some examples: a) J. Wer-
muth, S. L. Goodman, A. Jonczyk, H. Kessler, J. Am. Chem. Soc. 1997,
119, 1328 1335; b) A. Phan-Chan Du, M. C. Petit, G. Guichard, J. P.
Briand, S. Muller, M. T. Cung, Biochemistry 2001, 40, 5720 5727;
c) N. Nishikawa, H. Komazawa, A. Orikasa, M. Yoshikane, J.
Yamaguchi, M. Kojima, M. Ono, I. Itoh, I. Azuma, H. Fujii, J.
Murata, I. Saiki, Bioorg. Med. Chem. Lett. 1996, 6, 2725 2728; d) H.
Fujii, N. Nishikawa, H. Komazawa, A. Orikasa, M. Ono, I. Itoh, J.
Murata, I. Azuma, I. Saiki, Oncol. Res. 1996, 8, 333 342; e) G.
Guichard, F. Connan, R. Graff, M. Ostankovitch, S. Muller, J.-G.
Guillet, J. Choppin, J.-P. Briand, J. Med. Chem. 1996, 39, 2030 2039;
f) P. Juvvadi, S. Vunnam, R. B. Merrifield, J. Am. Chem. Soc. 1996,
118, 8989 8997; g) K. Witte, J. Skolnick, C. H. Wong, J. Am. Chem.
Soc. 1998, 120, 13042 13045; h) F. Nargi, E. Kramer, J. Mezencio, J.
Zamparo, C. Whetstone, M. H. V. Van Regenmortel, J. P. Briand, S.
Muller, F. Brown, Vaccine 1999, 17, 2888 2893; i) L. K. Iwai, M. A.
Duranti, L. C. J. Abel, M. A. Juliano, J. Kalil, L. Juliano, E. Cunha-
Neto, Peptides 2001, 22, 853 860; j) A. Verdoliva, M. Ruvo, M.
Villain, G. Cassani, G. Fassina, Biochim. Biophys. Acta 1995, 1253,
57 62; k) U. Wenzel, K. Jouvenal, D. Tripier, K. Ziegler, Biochem.
Pharmacol. 1995, 49, 479 487; l) M. A. Bednarek, M. V. Silva, B.
Arison, T. MacNeil, R. N. Kalyani, R.-R. C. Huang, D. H. Weinberg,
Peptides 1999, 20, 401 409; m) N. Beglova, S. Maliartchouk, I. Ekiel,
M. C. Zaccaro, H. U. Saragovi, K. Gehring, J. Med. Chem. 2000, 43,
3530 3540; n) A. Carotti, A. Carrieri, S. Cellamare, F. P. Fanizzi, E.
Gavuzzo, F. Mazza, Biopolymers Pept. Sci. 2001, 60, 322 332; o) T.
Haack, Y. M. Sanchez, M.-J. Gonzalez, E. Giralt, J. Pept. Sci. 1997, 3,
299 313; p) M. Goodman, R.-H. Mattern, P. Gantzel, A. Santini, R.
Iacovino, M. Saviano, E. Benedetti, J. Pept. Sci. 1998, 4, 229 238;
q) D. Seebach, M. Rueping, P. I. Arvidsson, T. Kimmerlin, P. Micuch,
C. Noti, D. Langenegger, D. Hoyer, Helv. Chim. Acta 2001, 84, 3503
3510; r) M. Marino, A. Ippolito, G. Fassina, Eur. J. Immunol. 1999, 29,
2560 2566; s) J. A. Carver, G. Esposito, P. Viglino, F. Fogolari, G.
Guichard, J.-P. Briand, M. H. V. Van Regenmortel, F. Brown, P.
Mascagni, Biopolymers 1997, 41, 569 590; t) J. F. Hernandez, J. M.
[6] For clarity, throughout the paper we refer to the title compounds
only as PMR and PMRI y[NHCH(CF3)]Gly peptides. However
y[NHCH(CF3)] and y[CH(CF3)NH] derivatives such as, HO-
AA1-[CH(CF3)CH(R)C(O)]-AA2-OH and HO-AA1-[C(O)CH(R)-
CH(CF3)]-AA2-OH, respectively, constitute two completely different
classes of compounds, not related by any symmetry operation, when
AA1 = AA2. It is convenient to distinguish between the two forms
when they are referred to a parent peptide such as H-AA1-AAR-AA2-
OH.
[7] Small libraries of PMR and PMRI y[NHCH(CF3)]Gly peptides, as
well as peptidyl hydroxamates having moderate inhibitory activity
against MMP-9 (gelatinase B), have been already prepared through
solid-phase synthesis: a) A. Volonterio, P. Bravo, N. Moussier, Zanda,
M. Tetrahedron Lett. 2000, 41, 6517 6521; b) A. Volonterio, P. Bravo,
M. Zanda, Tetrahedron Lett. 2001, 42, 3141 3144; c) A. Volonterio, S.
Bellosta, P. Bravo, M. Canavesi, E. Corradi, S. V. Meille, M. Monetti,
N. Moussier, M. Zanda, Eur. J. Org. Chem. 2002, 428 438; d) M. Sani,
P. Bravo, A. Volonterio, M. Zanda, Collect. Czech. Chem. Commun.
2002, 67, 1305 1319; for
a
recent paper on
a novel class of
retropeptides incorporating
a stereodefined 3,3,3-trifluoroalanine
¬
mimic: e) M. Sani, L. Bruche , G. Chiva, S. Fustero, J. Piera, A.
Volonterio, M. Zanda, Angew. Chem. 2003, 115, 2106 2109; Angew.
Chem. Int. Ed. 2003, 42, 2060 2063.
[8] See for example: L. R. Scolnick, A. M. Clements, J. Liao, L. Crenshaw,
M. Hellberg, J. May, T. R. Dean, D. W. Christianson, J. Am. Chem.
Soc. 1997, 119, 850 851.
[9] a) A. Shibuya, M. Kurishita, C. Ago, T. Taguchi, Tetrahedron 1996, 52,
271 278; see also: b) T. Yamazaki, N. Shinohara, T. Kitazume, S. Sato,
J. Fluorine Chem. 1999, 97, 91 96.
[10] a) H. Urbach, R. Henning, Tetrahedron Lett. 1984, 25, 1143 1146;
b) H. G. Eckert, M. J. Badian, D. Gantz, H.-M. Kellner, M. Volz,
Arzneim. Forsch. 1984, 34, 1435 1447. The extraordinary efficiency
and mildness of this aza-Michael reaction are due to the significantly
greater reactivity of 2 with respect to other crotonates, which in turn is
due to the concomitant presence of the electron-withdrawing CF3
group and imide function. For other aza-Michael reactions with
4-substituted acceptors see: c) A. J. Burke, S. G. Davies, C. J. R.
Hedgecock, Synlett 1996, 621 622; d) J. d×Angelo, J. Maddaluno, J.
Am. Chem. Soc. 1986, 108, 8112 8114; e) G. Cardillo, E. Di Martino,
L. Gentilucci, C. Tomasini, L. Tomasoni, Tetrahedron: Asymmetry
1995, 6, 1957 1963; f) R. Amoroso, G. Cardillo, P. Sabatino, C.
¡
Tomasini, A. Trere, J. Org. Chem. 1993, 58, 5615 5619; g) S. W.
¬
Baldwin, J. Aube, Tetrahedron Lett. 1987, 28, 179 182; h) M. Hirama,
T. Shigemoto, Y. Yamazaki, S. Ito, J. Am. Chem. Soc. 1985, 107, 1797
1798; i) M. E. Bunnage, S. G. Davies, C. J. Goodwin, I. A. S. Walters,
Tetrahedron: Asymmetry 1994, 5, 35 36; j) S. G. Davies, I. A. S.
Walters, J. Chem. Soc. Perkin Trans. 1 1994, 1129 1139; k) S. G.
Davies, O. Ichihara, I. A. S. Walters, J. Chem. Soc. Perkin Trans. 1
1994, 1141 1147; l) J. M. Hawkins, T. A. Lewis, J. Org. Chem. 1994,
59, 649 652; m) N. Asao, T. Shimada, T. Sudo, N. Tsukada, K.
Yazawa, Y. S. Gyoung, T. Uyehara, Y. Yamamoto, J. Org. Chem. 1997,
62, 6274 6282; n) K. Rudolf, J. M. Hawkins, R. J. Loncharich, K. N.
Houk, J. Org. Chem. 1988, 53, 3879 3882; o) J. M. Hawkins, G. C. Fu,
J. Org. Chem. 1986, 51, 2820 2822; p) L. S. Liebeskind, M. E. Welker,
Tetrahedron Lett. 1985, 26, 3079 3082; q) A. De, P. Basak, J. Iqbal,
Tetrahedron Lett. 1997, 38, 8383 8386; r) Y. Yamamoto, N. Asao, T.
Uyehara, J. Am. Chem. Soc. 1992, 114, 5427 5429; s) F. Dumas, B.
Mezrhab, J. d×Angelo, C. Riche, A. Chiaroni, J. Org. Chem. 1996, 61,
¬
Soleilhac, B. P. Roques, M. C. Fournie-Zaluski, J. Med. Chem. 1988,
¬
31, 1825 1831; u) S. L. Roderick, M. C. Fournie-Zaluski, B. P. Ro-
ques, B. W. Matthews, Biochemistry 1989, 28, 1493 1497.
[5] For a preliminary communication on the synthesis of PMR and PMRI
y[NHCH(CF3)]Gly peptides: a) A. Volonterio, P. Bravo, M. Zanda,
Org. Lett. 2000, 2, 1827 1830; a conceptually related peptide bond
surrogate y[CH(CN)NH] has been reported: b) S. Herrero, M. L.
¬
¬
¬
ƒ
Suarez-Gea, R. Gonzalez-Muniz, M. T. GarcÌa-Lopez, R. Herranz, S.
ƒ
Ballaz, A. Barber, A. Fortuno, J. Del RÌo, Bioorg. Med. Chem. Lett.
1997, 7, 855 860; for some recent examples of fluorine containing
peptidomimetics: c) G. S. Garrett, S. J. McPhail, K. Tornheim, P. E.
Correa, J. M. McIver, Bioorg. Med. Chem. Lett. 1999, 9, 301 306;
d) M.-A. Poupart, G. Fazal, S. Goulet, L.-T. Mar, J. Org. Chem. 1999,
64, 1356 1361; e) M. Eda, A. Ashimori, F. Akahoshi, T. Yoshimura,
Chem. Eur. J. 2003, 9, 4510 4522
¹ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4521