E. Turtle et al. / Bioorg. Med. Chem. Lett. 22 (2012) 7397–7401
7401
I
reduction of a 4-nitro precursor. Reaction of the amine with vari-
ous isocyanates gave disubstituted ureas. The final compounds
were, again, produced by conversion of the esters to hydroxamic
acids 80 with hydroxyl amine.
The ureas gave substantial improvement over the previous
para-substituted analogs, with IC50 values in the low to mid nano-
molar range (Table 6). Trisubstituted ureas bearing a benzyl or
phenyl substituent at R3 were less potent then the corresponding
disubstituted analogs, as seen in compounds 85 versus 89 and 82
versus 86.
O
O
S
O
O
S
a
Cl
O
Cl
R2
N
H
N
R3
NCO
77
78
OMe
OMe
H2N
b
O
The urea 89 was identified as a potent inhibitor of PCP with an
IC50 of 10 nM. When tested in a cellular assay, measuring inhibition
of collagen deposition in HFF cell cultures,19 89 displayed an IC50 of
+
MeO
N
H
O
79
MeO
1
l
M. The compound showed excellent selectivity versus several
matrix metalloproteinases (MMP-1 IC50 >25 M; MMP-2 IC50
>25 M; and MMP-9 IC50 >25 M). Compounds 89 and 60 possess
OMe
O
l
HO
l
l
N
N
S
O
H
c, d
O
promising properties for the development of topically applied anti-
scarring therapeutics. The additional optimization of this class of
inhibitors to improve the DMPK properties may also provide new
systemic anti-fibrotic agents.
O
R2
N
N
H
R3
80
II
OMe
O
References and notes
e,f
79
MeO
N
1. Hinz, B.; Gabbiani, G. F1000 Biol. Report 2010, 2, 78.
2. Zavoico, G. B. Drug Market Dev. 1999, 10, 2.
O
S
O
3. Lapiere, C. M.; Lenarers, A.; Kohn, I. D. Proc. Natl. Acad. Sci. U.S.A. 1971, 68, 3054.
4. Li, S.; Sieron, A. L.; Fertala, A.; Hojima, Y.; Arnold, W. V. Proc. Natl. Acad. Sci.
U.S.A. 1996, 93, 5127.
5. Uzel, M. I.; Scott, I. C.; Babakhanlou-Chase, H.; Palamakumbura, A. H.; Pappano,
W. N.; Hong, H.-H.; Greenspan, D. S.; Trackman, P. C. J. Biol. Chem. 2001, 276,
22537.
NH2
81
OMe
O
HO
6. Prockop, D. J.; Sieron, A. L.; Li, S. Matrix Biol. 1998, 16, 399.
7. Turtle, E.; Ho, W.-B. Expert Opin. Ther. Pat. 2004, 14, 1185.
8. IC50 determination for PCP and MMP’s: A fluorogenic peptide containing a
consensus PCP cleavage site was used to assess the inhibitory activity of
compounds on PCP. In a similar assay, a fluorogenic peptide with the sequence
Mca-P-L-G-L-Dap(Dnp)-A-R-NH2 (kex = 360 nm, kem = 465 nm; Bachem catalog
no. M-1895) was used to measure the inhibitory activity of compounds on
MMP-1, MMP-2 and MMP-9. The latter enzymes were activated according to
the manufacturer’s instructions using p-amino phenylmercuric acetate. BMP-1,
and activated MMP-1, -2, and -9 were incubated for 1 h at 37 °C in the presence
of inhibitors and 50 mM of the appropriate fluorogenic peptide substrate, and
the increase in fluorescence was used to determine initial rates.
9. Ovens, A.; Joule, J. A.; Kadler, K. E. J. Peptide Sci. 2000, 6, 489.
10. Dankwardt, S. M.; Martin, R. L.; Chan, C. S.; VanWart, H. E.; Walker, K. A. M.;
Delae, N. G.; Robinson, L. A. Bioorg. Med. Chem. Lett. 2001, 11, 2085.
11. Robinson, L. A.; Wilson, D. M.; Delaet, N. G. J.; Bradley, E. K.; Dankwardt, S. M.;
Campbell, J. A.; Martin, R. L.; Van Wart, H. E.; Walker, K. A. M.; Sullivan, R. W.
Bioorg. Med. Chem. Lett. 2003, 13, 2381.
12. Delaet, N. G. J.; Robinson, L. A.; Wilson, D. M.; Sullivan, R. W.; Bradley, E. K.;
Dankwardt, S. M.; Martin, R. L.; Van Wart, H. E.; Walker, K. A. M. Bioorg. Med.
Chem. Lett. 2003, 13, 2101.
13. Fish, P. V.; Allan, G. A.; Bailey, S.; Blagg, J.; Butt, R.; Collis, M. G.; Greiling, D.;
James, K.; Kendall, J.; McElroy, A.; McCleverty, D.; Reed, C.; Webster, R.;
Whitlock, G. A. J. Med. Chem. 2007, 50, 3442.
14. Bailey, S.; Fish, P. V.; Billotte, S.; Bordner, J.; Greiling, D.; James, K.; McElroy, A.;
Mills, J. E.; Reed, C.; Webster, R. Bioorg. Med. Chem. Lett. 2008, 18, 6562.
15. Hajduk, P. J.; Shuker, S. B.; Nettesheim, D. G.; Craig, R.; Augeri, D. J.; Albert, D.
H.; Guo, Y.; Meadows, R. P.; Xu, L.; Michaelides, M.; Davisen, K.; Fesik, S. W. J.
Med. Chem. 2002, 45, 5628.
16. Singh, J.; Conzentino, P.; Cundy, K.; Gainor, J. A.; Gilliam, C. L.; Gordon, T. D.;
Johnson, J. A.; Morgan, B. A.; Schneider, E. D.; Wahi, R. C.; Whipple, D. A. Bioorg.
Med. Chem. Lett. 1995, 5, 337.
g,c
N
H
N
S
O
O
O
R2
N
H
N
R3
80
Figure 5. Synthesis of ureas. Conditions: (a) NHR2R3; THF, 0 °C; (b) EtOH, reflux; (c)
78, TEA, rt; (d) NH2OH, MeOH, rt; (e) ClSO2Ph-NO2, TEA, DCM, rt; (f) HCO2NH4, Pd/C,
MeOH/EtOAc, reflux; (g) R-NCO, DCM, reflux.
Table 6
Optimization of spacers for sulfonamide series 81
OMe
O
HO
N
N
S
H
O
O
O
R2
N
H
N
R3
Compound
R2
Ph
R3
IC50 (lM)
82
83
84
85
86
87
88
89
90
91
H
H
H
0.093
0.35
0.042
0.38
0.78
0.073
0.30
0.010
0.030
0.060
4-MeO-Ph
4-CF3-Ph
Bn
Bn
Ph
H
17. Flipo, M.; Charton, J.; Hocine, A.; Dassonneville, S.; Deprez, B.; Deprez-Poulain,
R. J. Med. Chem. 2009, 52, 6790.
Ph
4-Ph-Ph
4-Cl-Ph
Bn
CH2CH2Ph
Me
18. Becker, D. P.; Barta, T. E.; Bedell, L. J.; Boehm, T. L.; Bond, B. R.; Carroll, J.;
Carron, C. P.; Decrescenzo, G. A.; Easton, A. M.; Freskos, J. N.; Funckes-Shippy,
C. L.; Heron, M.; Hockerman, S.; Howard, C. P.; Kiefer, J. R.; Li, M. H.; Mathis,
K. J.; McDonald, J. J.; Mehta, P. P.; Munie, G. E.; Sunyer, T.; Swearingen, C. A.;
Villamil, C. I.; Welsch, D.; William, J. M.; Yu, Y.; Yao, J. J. Med. Chem. 2010, 53,
6653.
H
H
H
H
19. Franklin, T. J.; Morris, W. P.; Edwards, P. N.; Large, M. S.; Stephenson, R.
Biochem. J. 2001, 353, 333.
reaction sequences to hydroxamates 80. In the second method, an
4-aminophenylsulphone intermediate 81 was prepared from