J. Am. Chem. Soc. 2000, 122, 12035-12036
Scheme 1. Example of Guanidinoglycoside Synthesisa
12035
Guanidinoglycosides: A Novel Family of RNA
Ligands
Nathan W. Luedtke, Tracy J. Baker, Murray Goodman,* and
Yitzhak Tor*
Department of Chemistry and Biochemistry
UniVersity of California, San Diego
La Jolla, California 92093-0358
ReceiVed July 5, 2000
Aminoglycoside antibiotics are a family of structurally diverse
polyamines that have been a central focus of small molecule-
RNA recognition studies over the past decade.1 The antibacterial
activity of these compounds is believed to derive from their
interaction with prokaryotic rRNA.2 More recently, aminoglyco-
sides have been synthetically modified in ongoing efforts to
discover new antiviral and antitumor agents.3 Aminoglycosides
show effective selectivity in their preferential binding of RNA
over DNA,4 but are relatively nonselective in their differentiation
between natural RNAs. Aminoglycosides are reported to bind a
wide range of unrelated RNA structures; including 16S and 18S
rRNAs,2,5 mRNA transcripts,3c tRNA,6 catalytic RNAs,7 and viral
RNAs.8 This general affinity for RNA is related to the ability of
aminoglycosides to bind RNA through electrostatic interactions
mediated by ammonium groups.9
a Reaction conditions: (a) 15 equiv of 6 in 1,4-dioxane/H2O (5:1), 15
equiv of NEt3, 3d, rt. b TFA/CH2Cl2 (1:1).
The guanidinium group plays a key role at many RNA-protein
binding interfaces, including the complexes formed between
transcriptional elongation factors with mRNA, tRNA synthetases
with tRNAs, ribosomal proteins with rRNA, and viral regulatory
proteins with their cognate RNA binding sites.10 In contrast to
ammonium groups, guanidinium groups are highly basic, planar,
and exhibit directionality in their H-bonding interactions. We
hypothesized that the RNA affinity and selectivity of aminogly-
coside-based ligands can be increased by replacing the ammonium
groups with guanidinium groups. In this report, we disclose a
new family of RNA ligands, termed “guanidinoglycosides”, in
which all of the ammonium groups of the natural aminoglycoside
antibiotics have been converted into guanidinium groups (Figure
1).11
butoxycarbonyl-N′′-triflylguanidine 6, a new guanidinylating
reagent.12 This novel reagent facilitates the guanidinylation of
polyfunctional amines in aqueous media and in high yields. For
example, when tobramycin (3a) is treated with an excess of 6 in
a 1,4-dioxane/water mixture, the Boc-protected, fully guanidin-
ylated derivative is obtained (Scheme 1, step a). Subsequent
deprotection of the Boc groups affords guanidino-tobramycin (step
b).13
The HIV-1 Rev-RRE interaction was used to examine the
impact of guanidinylation upon RNA binding, and to probe the
potential antiviral activity of these compounds. The binding of
Rev to the RRE (Rev response element) is responsible for the
export of unspliced and singly spliced HIV genomic RNA out of
the host nucleus.14 This essential protein-RNA interaction re-
mains an important, and nonutilized, therapeutic target. The high-
affinity Rev binding site on the RRE has been localized to the
purine-rich bulge shown in Figure 2.15 The binding of Rev to the
The preparation of guanidinoglycosides has been accomplished
through the treatment of aminoglycosides with N,N′-di-tert-
RRE is governed by the arginine-rich fragment, Rev34-50.
16 Key
(1) (a) Michael, K.; Tor, Y. Chem. Eur. J. 1998, 4, 2091-2098. (b) Walter,
F.; Vicens, Q.; Westhof, E. Curr. Opin. Chem. Biol. 1999, 3, 694-704.
(2) Moazed, D.; Noller, H. F. Nature 1987, 327, 389-394.
(3) (a) Kirk, S. R.; Luedtke, N. W.; Tor, Y. J. Am. Chem. Soc. 2000, 122,
980-981. (b) Litovchick, A.; Evdokimov, A. G.; Lapidot, A. Biochemistry
2000, 39, 2838-2852. (c) Sucheck, S. J.; Greenberg, W. A.; Tolbert, T. J.;
Wong, C.-H. Angew. Chem., Int. Ed. 2000, 39, 1080-1084.
(4) Chen, Q.; Shafer, R. H.; Kuntz, I. D. Biochemistry 1997, 36, 11402-
11407.
guanidinium groups make direct contacts with the RNA platform
and are essential for the specific binding of Rev to the RRE.17
Fluorescence anisotropy has been employed to determine the
affinity of the new derivatives to the RRE in solution.13 The RRE-
bound fluorescent Rev peptide has a slower Brownian tumbling
motion relative to the free peptide. Upon displacement of the
fluorescein-labeled Rev peptide from the RRE by an inhibitor, a
decrease in the anisotropy value is observed. Table 1 (column a)
compares the IC50 values of the guanidinoglycosides to the
aminoglycosides.18 Guanidinylation of kanamycin A, kanamycin
(5) Griffey, R. H.; Hofstadler, S. A.; Sannes-Lowery, K. A.; Ecker, D. J.;
Crooke, S. T. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 10129-10133.
(6) Kirk, S. R.; Tor, Y. Bioorg. Med. Chem. 1999, 7, 1979-1991.
(7) See ref 1b for a summary of the 11 known autocatalytic RNAs that
bind aminoglycosides.
(8) Zapp M. L.; Stern, S.; Green, M. R. Cell 1993, 74, 969-978. Mei,
H.-Y.; Galan, A. A.; Halim, N. S.; Mack, D, P.; Moreland, D. W.; Sanders,
K. B.; Truong, H. N.; Czarnik, A. W. Bioorg. Med. Chem. Lett. 1995, 5,
2755-2760.
(12) Feichtinger, K.; Sings, H. L.; Baker, T. J.; Matthews, K.; Goodman,
M. J. Org. Chem. 1998, 63, 8432-8439. Baker, T. J.; Goodman, M. Synthesis
1999, 1423-1426.
(9) (a) Hendrix, M.; Priestley, E. S.; Joyce, G. F.; Wong, C.-H. J. Am.
Chem. Soc. 1997, 119, 3641-3648. (b) Wang, H.; Tor, Y. J. Am. Chem. Soc.
1997, 119, 8734-8735. (c) Tor, Y.; Hermann, T.; Westhof, E. Chem. Biol.
1998, 5, R277-R283.
(13) See Supporting Information for experimental details.
(14) Pollard, V. W.; Malim, M. H. Annu. ReV. Microbiol. 1998, 52, 491-
532. Hope, T. J. Arch. Biochem Biophys. 1999, 365, 186-191. Frankel, A.
D.; Young, J. A. T. Annu. ReV. Biochem. 1998, 67, 1-25.
(10) For a review of RNA recognition by arginine-rich peptides, see: Weiss,
M. A.; Narayana, N. Biopolymers 1998, 48, 167-180. For a review of
Protein-RNA Recognition, see: De Guzman, R. N.; Turner, R. B.; Summers,
M. F. Biopolymers 1998, 48, 181-195.
(15) Holland, S. M.; Chavez, M.; Gerstberger, S.; Venkatesan, S. J. Virol.
1992, 66, 3699-3706. Tilley, L. S.; Malim, M. H.; Tewary, H. K.; Stockley,
P. G.; Cullen, B. R. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 758-762.
(16) Kjems, J.; Canlan; B. J.; Frankel, A. D.; Sharp, P. A. EMBO J. 1992,
11, 1119-1129.
(11) For site-specific monoguanidinylation of kanamycin A and gentamicin,
see: Steicher, W.; Loibner, H.; Kildebrandt, J.; Turnowsky, F. Drugs Exp.
Clin. Res. 1983, 9, 591-598. For monoguanidinylation of amikacin, see:
Hoshi, H.; Aburaki, S.; Yamasaki, T.; Naito, T.; Kawaguchi H. J. Antibiot.
1991, 44, 680-682.
(17) Tan, R.; Chen, L.; Buettner, J. A.; Hudson, D.; Frankel A. D. Cell
1993, 73, 1031-1040. Tan, R.; Frankel, A. D. Biochemistry 1994, 33, 14579-
14585. Battiste, J. L.; Mao, H.; Rao, N. S.; Tan, R.; Muhandiram, D. R.;
Kay, L. E.; Frankel, A. D.; Williamson, J. R. Science 1996, 273, 1547-1551.
10.1021/ja002421m CCC: $19.00 © 2000 American Chemical Society
Published on Web 11/17/2000