10.1002/chem.201805657
Chemistry - A European Journal
COMMUNICATION
alcohols was also demonstrated with camphor (95 %, 6t) and on
1-adamantanone (98 %, 6u). In general, a variety of functionalities
are well tolerated under the reaction conditions. For example,
ester, nitrile, carbamate, phthalimide, ketone and sulfonyl chloride
remain intact during the reaction, except for non-protected
primary amine (6e) which are oxidized to the nitro derivative,
quantitatively which is an interesting reaction in its own right.
Natural products such as sclareolide (5v) and cholestane (5w)
bearing multiple oxidative sites were studied. In the case of the
sclareolide, the Csp3-H oxidation was selectively observed at the
secondary carbon position C2 whereas for cholestane the
transformation occurred preferentially at the terminal tertiary
position.
Acknowledgements
Acknowledgements Text The authors gratefully acknowledge the
Walloon region (Belgium) – DG06 (Convention n°7240) for
funding.
Keywords: oxidation • Flow • TFDO • dioxirane • Oxone
[1]
[2]
W. Lu, L. Zhou in Oxidation of C-H Bonds; John Wiley & Sons; Hoboken,
New Jersey, 2017.
a) T. Newhouse, P. S. Baran, Angew. Chem. Int. Ed. 2011, 50, 3362; b)
M. C. White, Science 2012, 335, 807; c) M. Canta, M. Rodríguez, M.
Costas, Top. Curr. Chem. 2016, 372, 27; d) D. Font, M. Canta, M. Milan,
O. Cussó, X. Ribas, R. J. M. Klein Gebbink, M. Costas, Angew. Chem.
Int. Ed. 2016, 55, 5776; e) K. Kamata, K. Yonehara, Y. Nakagawa, K.
Uehara, N. Mizuno, Nat. Chem. 2010, 2, 478; f) D. P. Hruszkewycz, K.
C. Miles, O.R. Thiel, S. S. Stahl, Chem. Sci. 2017, 8, 1282; g) N.
Sauermann, T. Meyer, C. Tian, L. Ackermann, J. Am. Chem. Soc. 2017,
139, 18452; h) G. Olivo, G. Farinelli, A. Barbieri, O. Lanzalunga, S. Di
Stefano, M. Costas, Angew. Chem. Int. Ed. 2017, 56, 16347; i) E.
M. Simmons, J. F. Hartwig, Nature 2012, 482, 70; j) M. Zhou, N. D.
Schley, R. H. Crabtree, J. Am. Chem. Soc. 2010, 132, 12550.
a) E. McNeill, J. Du Bois, Chem. Sci. 2012, 3, 1810; b) E. McNeill, J. Du
Bois, J. Am. Chem. Soc. 2010, 132, 10202.
6a
Adapalene (Differin)
Figure 2. Retrosynthetic step for the synthesis of Adapalene18
[3]
[4]
a) D. Wang, W. G. Shuler, C. J. Pierce, M. K. Hilinski, Org. Lett. 2016,
18, 3826; b) C. J. Pierce, M. K. Hilinski, Org. Lett. 2014, 16, 6504; c) A.
M. Adams, J. Du Bois, Chem. Sci. 2014, 5, 656; d) B. H. Brodsky, J. Du
Bois, J. Am. Chem. Soc. 2005, 127, 15391; e) M. Lee, M. S. Sandford,
Org. Lett. 2017, 3, 572; f) X. Li, X. Che, G.-H. Chen, J. Zhang, J.-L. Yan,
Y.-F. Zhang, L.-S. Zhang, C.-P. Hsu, Y. Q. Gao, Z.-J. Shi, Org. Lett. 2016,
6, 1234.
The scalability of this flow procedure has been
demonstrated on 2.7 g synthesis of the alcohol (6a), a common
starting material for the preparation of Adapalene, a retinoid drug
(Figure 2).20 The initial flow set-up has been scale out by
increasing the size of the reactor from 5 mL to 40 mL to
accommodate the critical mixing requirement at high flow rate with
the use of two “helicoidal static-mixer coil”. A 2.3 hours run at
steady state in standard conditions provided the desired product
6a with similar yield (96 %) to the smaller scale reaction with this
particular reactor design (Scheme 3).
[5]
[6]
P. E. Gormisky, M. C. White, J. Am. Chem. Soc. 2013, 135, 14052.
a) X. Ren, J. A. Yorke, E. Taylor, T. Zhang, W. Zhou, L. L. Wong, Chem.
Eur. J. 2015, 21, 15039; b) J. Genovino, D. Sames, L. G. Hamann, B. B.
Touré, Angew. Chem. Int. Ed. 2016, 55, 14218.
[7]
[8]
[9]
Y. Kawamata, M. Yan, Z. Liu, D.-H. Bao, J. Chen, J. T. Starr, P. S. Baran,
J. Am. Chem. Soc. 2017, 139, 7448.
Na2SO3 (1M)
6.7 mL.min-1
4 (1.5M)
in DCM
a) G. Laudadio, S. Govaerts, Y. Wang, D. Ravelli, H. F. Koolman, M.
Fagnoni, S. W. Djuric, T. Noël, Angew. Chem. Int. Ed. 2018, 15, 4078.
D. M. Schultz, F. Lévesque, D. A. Di Rocco, M. Reibarkh, Y. Ji, L. A.
Dropinski, J. F. Joyce, H. Sheng, B. D. Sherry, I. W. Davies, Angew.
Chem. Int. Ed. 2017, 48, 15476.
in water
2.7 mL.min-1
5a (0.05M)
in DCM
2 X 20 mL, 25°C
helicoidal static-mixer reactor
(2.5 g, 18.3 mmol)
NaHCO3 (1.5M)
75 psi
13.3 mL.min-1
13.3 mL.min-1
in water
[10] a) J. O. Edwards, R. H. Pater, P. R. Curci, F. Di Furia, Photochem.
Photobiol. 1979, 30, 63; b) J. K. Crandall, R. Curci, L. D’Accolti, C. Fusco,
Dimethyldioxirane. In Encyclopedia of reagents for Organic Synthesis;
John Wiley & Sons; New York, 2005.
Residence time
80 seconds
6a, 96% yield
Oxone (0.5M)
in water
Scheme 3. The 2.5 grams scale Csp3-H oxidation of adamantane (5a).
[11] a) R. Mello, M. Fiorentino, C. Fusco, R. Curci, J. Am. Chem. Soc. 1989,
111, 6749; b) R. W. Murray, R. J. Jeyaraman, Org. Chem. 1985, 50,
2847; c) G. Asensio, M. E. Gonzalez-Nunez, C. Boix Bernardini, R. Mello,
W. Adam, J. Am. Chem. Soc, 1993, 115, 7250; d) J. K. Crandall, R. Curci,
L. D’Accolti, C. Fusco, Methyl(trifluoromethyl)dioxirane. In Encyclopedia
of reagents for Organic Synthesis; John Wiley & Sons; New York, 2005.
[12] a) H. Mikula, D. Svatunek, D. Lumpi, F. Glöcklhofer, C. Hametner, J.
Fröhlich, Org. Process Res. Dev. 2013, 17, 313; b) M. Chabanas, Teles,
G. Heydrich, R. S. Sanderson, US 2008/0177092 A1, Jul. 24, 2008; c) R.
Mello, M. E. González-Núñez, G. Asensio, Synlett 2007, 1, 47; d) W.
Adam, C. Van Barneveld, D. Golsh, Tetrahedron, 1996, 52, 2377.
[13] a) J. S. Lee, P. L. Fuchs, Org. Lett. 2003, 5, 2247; b) S. Kasuya, S.
Kamijo, M. Inoue, Org. Lett. 2009, 11, 3630; c) K. Chen, P. S. Baran,
Nature 2009, 459, 824; d) K. Chen, A. Eschenmoser, P. S Baran, Angew.
Chem. Ed. 2009, 48, 9705.
In summary, the development of
a
new general
trifluoromethylated dioxirane-mediated Csp3-H oxidation method
has been enabled in a fast, efficient and simple fashion through a
continuous flow process. This practical method employs
inexpensive reagents and can be applied to a wide panel of
substrates bearing a large range of functionalities. The flow
conditions provide a scalable and safer solution for transforming
simple aliphatic compounds to complex materials.
[14] W. G. Shuler, S. L. Johnson, M. K. Hilinski, Org. Lett. 2017, 19, 4790.
[15] a) M. Movsisyan, E. I. P. Delbeke, J. K. E. T. Berton, C. Battilocchio, S.
V. Ley, C. V. Stevens, Chem. Soc. Rev. 2016, 45, 4892; b) D. Webb, T.
This article is protected by copyright. All rights reserved.