D. L. Boger et al. / Bioorg. Med. Chem. Lett. 10 (2000) 1471±1475
1475
References and Notes
9. (a) Taylor, E. C.; Harrington, P.M.; Shih, C. A. Hetero-
cycles 1989, 28, 1169. (b) Shih, C.; Gossett, L. S.; Worzalla, J.
F.; Rinzel, S. M.; Grindey, G. B.; Harrington, P. M.; Taylor,
E. C. J. Med. Chem. 1992, 35, 1109. (c) Bigham, E. C.;
Hodson, S. J.; Mallory, R.; Wilson, D.; Duch, D. S.; Smith, G.
K.; Ferone, R. J. Med. Chem. 1992, 35, 1399. (d) Taylor, E.
C.; Schrader, T. H.; Walensky, L. D. Tetrahedron 1992, 48, 19.
10. (a) Jacobson, A. R.; Tam, S. W.; Sayre, L. M. J. Med.
Chem. 1991, 34, 2816. (b) Khan, H. A.; Robins, D. J. J. Chem.
Soc. Perkin Trans. 1 1985, 101.
1. Warren, M. S.; Mattia, K. M.; Marolewski, A. E.;
Benkovic, S. J. Pure Appl. Chem. 1996, 68, 2029.
2. Jackson, R. C.; Harkrader, R. J. In Nucleosides and Cancer
Treatment; Tattersall, M. H. N., Fox, R. M., Eds.; Academic:
Sydney, 1981; pp 18±31.
3. (a) Beardsley, G. P.; Moroson, B. A.; Taylor, E. C.; Moran,
R. G. J. Biol. Chem. 1989, 264, 328. (b) Baldwin, S. W.; Tse,
A.; Gossett, L. S.; Taylor, E. C.; Rosowsky, A.; Shih, C.;
Moran, R. G. Biochemistry 1991, 30, 1997.
4. (a) Boger, D. L.; Haynes, N.-E.; Kitos, P. A.; Warren, M. S.;
Ramcharan, J.; Marolewski, A. E.; Benkovic, S. J. Bioorg. Med.
Chem. 1997, 5, 1817. (b) Boger, D. L.; Haynes, N.-E.; Warren, M.
S.; Gooljarsingh, L. T.; Ramcharan, J.; Kitos, P. A.; Marolewski,
A. E.; Benkovic, S. J. Bioorg. Med. Chem. 1997, 5, 1831. (c) Boger,
D. L.; Haynes, N.-E.; Warren, M. S.; Ramcharan, J.; Kitos, P. A.;
Benkovic, S. J. Bioorg. Med. Chem. 1997, 5, 1839. (d) Boger, D.
L.; Haynes, N.-E.; Warren, M. S.; Ramcharan, J.; Marolewski, A.
E.; Kitos, P. A.; Benkovic, S. J. Bioorg. Med. Chem. 1997, 5, 1847.
(e) Boger, D. L.; Kochanny, M. J.; Cai, H.; Wyatt, D.; Kitos, P.
A.; Warren, M. S.; Ramcharan, L. T.; Gooljarsingh, L. T.;
Benkovic, S. J. Bioorg. Med. Chem. 1998, 6, 643.
5. Terrier, F. In Nucleophilic Aromatic Displacement: The
In¯uence of the Nitro Group; VCH: New York, 1991.
6. Boger, D. L.; Zhou, J.; Borzilleri, R. M.; Nukui, S.; Castle,
S. L. J. Org. Chem. 1997, 62, 2059.
7. (a) Sanger, F. Biochem. J. 1945, 39, 507. (b) Zahn, H. Kol-
loid-Z. 1951, 121, 40. (c) Zahn, H.; Meienhofer, J. Makromol.
Chem. 1958, 26, 126.
8. (a) Molina, H. A.; Bistoletti, Y. Acta Bioquim. Clin. Lati-
noam. 1988, 22, 391. (b) Shanahan, M. F.; Jacquez, J. A.
Membr. Biochem. 1978, 1, 239. (c) Riva, F.; Giantoso, A.;
Voltattorni, C. B.; Turano, C. Methods Enzymol. 1979, 62,
510. (d) Riva, F.; Giartosio, A.; Turano, C. Methods Enzymol.
1977, 46, 441. (e) Riva, F.; Giartosio, A.; Voltattorni, C. B.;
Orlacchio, A.; Turano, C. Biochem. Biophys. Res. Commun.
1975, 66, 863. (f) Riva, F.; Carotti, D.; Barra, D.; Giartosio,
A.; Turano, C. J. Biol. Chem. 1980, 255, 9230. (g) Carotti, D.;
Riva, F.; Santucci, R.; Ascoli, F.; Fasella, P. Eur. J. Biochem.
1982, 124, 589. (h) Ottonello, S.; Mozzarelli, A.; Rossi, G.
L.; Carotti, D.; Riva, F. Eur. J. Biochem. 1983, 133, 47. (i)
Carotti, D.; Andria, F.; Giartosio, A.; Turano, C.; Riva, F.
Eur. J. Biochem. 1985, 146, 619.
11. 1H NMR characterization of representative compounds is
as follows: 2: 1H NMR (DMSO-d6, 250 MHz) d 9.29 (bs, 1H),
8.87 (d, J=8.0 Hz, 1H), 7.16 (d, J=15.0 Hz, 1H), 6.12 (bs,
2H), 5.94 (bs, 2H), 3.18±3.10 (m, 2H), 2.26 (t, J=6.8 Hz, 2H),
1.65±1.54 (m, 2H); 12: 1H NMR (DMSO-d6, 400 MHz) d 8.57
(d, J=7.9 Hz, 1H), 7.92 (d, J=8.2 Hz, 2H), 7.41 (d, J=7.9
Hz, 2H), 7.31 (d, J=14.9 Hz, 1H), 6.08 (bs, 2H), 5.84 (bs, 2H),
4.73 (s, 2H), 3.83 (s, 3H), 3.21 (t, J=7.0 Hz, 2H), 2.09 (t,
1
J=7.9 Hz, 2H), 1.66±1.59 (m, 2H); 22: H NMR (DMSO-d6,
400 MHz) d 8.57 (d, J=7.7 Hz, 1H), 7.83 (d, J=8.0 Hz, 2H),
7.37 (d, J=8.0 Hz, 2H), 7.32 (d, J=15.0 Hz, 1H), 4.73 (s, 2H),
4.36±4.25 (m, 1H), 3.26±3.15 (m, 2H), 2.33 (t, J=6.6 Hz, 2H),
2.20±2.11 (m, 2H), 2.10±1.85 (m, 2H), 1.74±1.60 (m, 2H), 1.40
1
(s, 9H), 1.37 (s, 9H); 35: H NMR (DMSO-d6, 250 MHz) d
8.56 (d, J=8.4 Hz, 1H), 7.84 (d, J=9.1 Hz, 2H), 7.38 (d,
J=8.0 Hz, 2H), 7.31 (d, J=15.0 Hz, 1H), 4.73 (s, 2H), 4.46±
4.32 (m, 1H), 3.29±3.15 (m, 2H), 2.34 (t, J=8.0 Hz, 2H), 2.20±
2.05 (m, 2H), 2.03±1.88 (m, 2H), 1.74±1.60 (m, 2H).
12. The CCRF-CEM cytotoxicity assay, the AICAR Tfase
inhibition studies and the time-dependent GAR Tfase inhibi-
tion studies were performed as described in Boger, D. L.;
Haynes, N.-E.; Kitos, P. A.; Warren, M. S.; Ramcharan, J.;
Marolewski, A. E.; Benkovic, S. J. Bioorg. Med. Chem. 1997,
5, 1817 with the following changes: In the GAR Tfase assay,
solutions were made containing 50 nM purN GAR Tfase, 750
nM BSA, 1.25 mM GAR (if GAR was present during the pre-
incubation) and 250 mM inhibitor. These solutions were incu-
bated at room temperature. Aliquots of these stock solutions
were taken, diluted 25-fold in assay buer, and thermostated
to 26 ꢀC on a Cary 1 UV-Visible spectrophotometer. Assays
were initiated by the addition of 20 mM fDDF at the indicated
time points. In the AICAR Tfase assay, the assay solutions
were incubated at room temperature for 12 h before the reac-
tion was initiated by addition of AICAR.