Communications to the Editor
J ournal of Medicinal Chemistry, 1997, Vol. 40, No. 15 2291
J . Bone Mineral Res. 1994, 9, 1021-1028. (b) Helfrich, M. H.;
Nesbitt, S. A.; Dorey, E. L.; Horton, M. A. Rat Osteoclasts Adhere
to a Wide Range of RGD (Arg-Gly-Asp) Peptide-containing
Proteins, Including the Bone Sialoproteins and Fibronectin, via
a â3 Integrin. J . Bone Mineral Res. 1992, 7, 335-343. (c)
Horton, M. A.; Taylor, M. L.; Arnett, T. R.; Helfrich, M. H. Arg-
Gly-Asp (RGD) Peptides and the Anti-vitronectin Receptor
Antibody 23C6 Inhibit Dentine Resorption and Cell Spreading
by Osteoclasts. Exp. Cell Res. 1991, 195, 368-375.
Ta ble 3. Binding Activity of Benzimidazole-Containing RVâ3
Antagonists
(3) (a) Choi, E. T.; Engel, L.; Callow, A. D.; Sun, S.; Trachtenberg,
J .; Santoro, S.; Ryan, U. S. Inhibition of Neointimal Hyperplasia
by Blocking Rvâ3 Integrin with a Small Peptide Antagonist
GpenGRGDSPCA. J . Vasc. Surgery 1994, 19, 125-134. (b)
Matsuno, H.; Stassen, J . M.; Vermylen, J .; Deckmyn, H. Inhibi-
tion of Integrin Function by a Cyclic RGD-containing Peptide
Prevents Neointima Formation. Circulation 1994, 90, 2203-
2206.
(4) (a) Brooks, P. C.; Clark, R. A. F.; Cheresh, D. A. Requirement
of Vascular Integrin RVâ3 for Angiogenesis. Science 1994, 264,
569-571. (b) Brooks, P. C.; Montgomery, A. M. P.; Rosenfeld,
M.; Reisfeld, R. A.; Hu, T.; Klier, G.; Cheresh, D. A. Integrin
Rvâ3 Antagonists Promote Tumor Regression by Inducing Apo-
ptosis of Angiogenic Blood Vessels. Cell 1994, 79, 1157-1164.
(5) (a) Hammes, H.-P.; Brownlee, M.; J onczyk, A.; Sutter, A.;
Preissner, K. T. Subcutaneous Injection of a Cyclic Peptide
Antagonist of Vitronectin Receptor-type Integrins Inhibits Reti-
nal Neovascularization. Nature Med. 1996, 2, 529-533. (b)
Friedlander, M.; Theesfeld, C. L.; Sugita, M.; Fruttiger, M.;
Thomas, M. A.; Chang, S.; Cheresh, D. A. Involvement of
Integrins RVâ3 and RVâ5 in Ocular Neovascular Diseases. Proc.
Natl. Acad. Sci. U.S.A. 1996, 93, 9764-9769.
(6) Yun, Z.; Menter, D. G.; Nicolson, G. L. Involvement of RVâ3 in
Cell Adhesion, Motility, and Liver Metastasis of Murine RAW117
Large Cell Lymphoma. Cancer Res. 1996, 56, 3103-3111.
(7) For recent reviews on fibrinogen receptor antagonists, see: (a)
Ojima, I.; Chakravarty, S.; Dong, Q. Bioorg. Med. Chem. 1995,
3, 337-360. (b) Nichols, A. J .; Vasko, J . A.; Koster, P. F.;
Valocik, R. E.; Samanen, J . M. GPIIb/IIIa Antagonists as Novel
Antithrombotic Drugs: Potential Therapeutic Agents. In Cel-
lular Adhesion: Molecular Definition to Therapeutic Potential;
Metcalf, B. W., Dalton, B. J ., Poste, G., Eds.; Plenum Press: New
York, 1994; pp 213-237. (c) Cook, N. S.; Kottirsch, G.; Zerwes,
H.-G. Drugs Future 1994, 19, 135-159. (d) Blackburn, B. R.;
Gadek, T. R. Annu. Rep. Med. Chem. 1993, 28, 79-88. (e)
Samanen, J . GPIIb/IIIa Antagonists. Annu. Rep. Med. Chem.
1996, 31, 91-100.
(8) Peishoff, C. E.; Ali, F. E.; Bean, J . W.; Calvo, R.; D’Ambrosio, C.
A.; Eggleston, D. S.; Kline, T. P.; Koster, P.; Nichols, A.; Powers,
D.; Romoff, T.; Samanen, J . M.; Stadel, J .; Vasco, J .; Wong, A.;
Kopple, K. D. Investigation of Conformational Specificity at
GPIIb/IIIa: Evaluation of Conformationally Constrained RGD
Peptides. J . Med. Chem. 1992, 35, 3962-3969.
(9) Callahan, J . F.; Bean, J . W.; Burgess, J . L.; Eggleston, D. S.;
Hwang, S. M.; Kopple, K. D.; Koster, P. F.; Nichols, A.; Peishoff,
C. E.; Samanen, J . M.; Vasko, J . A.; Wong, A.; Huffman, W. F.
Design and Synthesis of a C7 Mimetic for the Predicted γ-Turn
Conformation Found in Several Constrained RGD Antagonists.
J . Med. Chem. 1992, 35, 3970-3972.
(10) Ali, F. E.; Bennett, D. B.; Calvo, R. R.; Elliott, J . D.; Hwang,
S.-M.; Ku, T. W.; Lago, M. A.; Nichols, A. J .; Romoff, T. T.; Shah,
D. H.; Vasko, J . A.; Wong, A. S.; Yellin, T. O.; Yuan, C.-K.;
Samanen, J . M. Conformationally Constrained Peptides and
Semipeptides Derived from RGD as Potent Inhibitors of the
Platelet Fibrinogen Receptor and Platelet Aggregation. J . Med.
Chem. 1994, 37, 769-780.
(11) Ku, T. W.; Ali, F. E.; Barton, L. S.; Bean, J . W.; Bondinell, W.
E.; Burgess, J . L.; Callahan, J . F.; Calvo, R. R.; Chen, L.;
Eggleston, D. S.; Gleason, J . G.; Huffman, W. F.; Hwang, S. M.;
J akas, D. R.; Karash, C .B.; Keenan, R. M.; Kopple, K. D.; Miller,
W. H.; Newlander, K. A.; Nichols, A.; Parker, M. F.; Peishoff, C.
E.; Samanen, J . M.; Uzinskas, I.; Venslavsky, J . W. Direct
Design of a Potent Non-peptide Fibrinogen Receptor Antagonist
Based on the Structure and Conformation of a Highly Con-
strained Cyclic RGD Peptide. J . Am. Chem. Soc. 1993, 115,
8861-8862.
(12) Bondinell, W. E.; Keenan, R. M.; Miller, W. H.; Ali, F. E.; Allen,
A. C.; DeBrosse, C. W.; Eggleston, D. S.; Erhard, K. F.;
Haltiwanger, R. C.; Huffman, W. F.; Hwang, S. M.; J akas, D.
R.; Koster, P. F.; Ku, T. W.; Lee, C. P.; Nichols, A. J .; Ross, S.
T.; Samanen, J . M.; Valocik, R. E.; Vasko-Moser, J . A.; Ven-
slavsky, J . W.; Wong, A. S.; Yuan, C.-K. Design of a Potent and
Orally Active Nonpeptide Platelet Fibrinogen Receptor (GPIIb/
IIIa) Antagonist. Bioorg. Med. Chem. 1994, 2, 897-908.
(13) Ku, T. W.; Miller, W. H.; Bondinell, W. E.; Keenan, R. M.;
Nichols, A. J .; Peishoff, C. E.; Samanen, J . M.; Wong, A. S.;
Huffman, W. F. Potent Non-peptide Fibrinogen Receptor An-
tagonists which Present an Alternative Pharmacophore. J . Med.
Chem. 1995, 38, 9-12.
the hypothesis that the 1,4-benzodiazepine acts as a
Gly-Asp mimic. In our work on both peptide and
nonpeptide RIIbâ3 antagonists, we had found that amide
N-methylation resulted in an increase in activity.12
Application of the same tactic in the present investiga-
tion afforded SB 223245 (14),20 which had 2 nM affinity
for RVâ3 and 30 µM affinity for RIIbâ3sgreater than
10000-fold selectivity.
The discovery of 14 demonstrated that highly potent
and selective nonpeptide RVâ3 antagonists could be
designed by consideration of the conformations of con-
strained RGD peptides and peptidomimetics in an
approach similar to that used in the identification of
highly potent and selective nonpeptide RIIbâ3 antago-
nists. Further evaluation in functional assays has
revealed that 14 is a potent inhibitor of both human
osteoclast-mediated bone resorption21 and vitronectin-
induced haptotaxis of human endothelial cells,22 show-
ing the potential therapeutic utility of compounds in this
series. This work has also revealed the remarkable
versatility of the benzodiazepine nucleus as a Gly-Asp
mimetic, as potent nonpeptide antagonists from the
benzodiazepine series can be designed with selectivity
14
for either RIIbâ3 or RVâ3 simply by altering the length
and nature of the Arg mimetic.
Su p p or tin g In for m a tion Ava ila ble: Characterization
data (1H NMR, MS, and elemental analyses) for compounds
5-14 (10 pages). Ordering information is given on any current
masthead page.
Refer en ces
(1) (a) Diamond, M. S.; Springer, T. A. The Dynamic Regulation of
Integrin Adhesiveness. Curr. Biol. 1994, 4, 506-517. (b) Loftus,
J . C.; Smith, J . W.; Ginsberg, M. H. Integrin-mediated Cell
Adhesion: the Extracellular Face. J . Biol. Chem. 1994, 269,
25235-25238.
(2) (a) Van der Pluijm, G.; Mouthaan, H.; Baas, C.; de Groot, H.;
Papapoulos, S.; Lo¨wik, C. Integrins and Osteoclastic Resorption
in Three Bone Organ Cultures: Differential Sensitivity to
Synthetic Arg-Gly-Asp Peptides During Osteoclast Formation.