Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 6
COMMUNICATION
Journal Name
reaction concentration, all reactions were able to be run in (10)
less than 10 minutes of total retention time. Furthermore,
due to the efficient heat transfer enabled by the flow
processes, both TBS silyl protection and alkyl ether (11)
installations could be run at ambient temperatures rather
Ratner, D. M.; Murphy, E. R.; Jhunjhunwala, M.;
DOI: 10.1039/D0OB00522C
Snyder, D. A.; Jensen, K. F.; Seeberger, P. H. Chem.
Commun. 2005, 578–580.
Sniady, A.; Bedore, M. W.; Jamison, T. F. Angew.
Chemie Int. Ed. 2011, 50, 2155–2158.
Matthies, S.; McQuade, D. T.; Seeberger, P. H. Org.
Lett. 2015, 17, 3670–3673.
Cancogni, D.; Lay, L. Synlett 2014, 25, 2873–2878.
Xolin, A.; Stévenin, A.; Pucheault, M.; Norsikian, S.;
Boyer, F.-D.; Beau, J.-M. Org. Chem. Front. 2014, 1,
992–1000.
than
0 ˚C, which is typically required for these (12)
transformations in batch. We anticipate that this flow-
based approach will accelerate glycal synthesis and also (13)
provide an invaluable tool to organic chemists who are (14)
looking to adopt these steps in their own synthetic
pathways to increase rates of substrate production.
Efforts to automate this chemistry and telescope it into a (15)
single sequence for the continuous production of
protected glycans from commercial materials are
Aronow, J.; Stanetty, C.; Baxendale, I. R.; Mihovilovic,
M. D. Monatshefte für Chemie - Chem. Mon. 2019,
150, 11–19.
currently underway.
(16)
(17)
(18)
(19)
(20)
(21)
Marion, K. C.; Wooke, Z.; Pohl, N. L. B. Carbohydr.
Res. 2018, 468, 23–29.
Kinfe, H. H. Org. Biomol. Chem. 2019, 17, 4153–
4182.
Bennett, C. S.; Galan, M. C. Chem. Rev. 2018, 118,
7931–7985.
Palo-Nieto, C.; Sau, A.; Galan, M. C. J. Am. Chem.
Soc. 2017, 139, 14041–14044.
McDonald, F. E.; Reddy, K. S.; Díaz, Y. J. Am. Chem.
Soc. 2000, 122, 4304–4309.
Di Bussolo, V.; Kim, Y.-J.; Gin, D. Y. J. Am. Chem.
Soc. 1998, 120, 13515–13516.
Gin, D. J. Carbohydr. Chem. 2002, 21, 645–665.
Di Bussolo, V.; Liu, J.; Huffman Jr., L. G.; Gin, D. Y.
Angew. Chemie 2000, 112, 210–213.
Shi, L.; Kim, Y.-J.; Gin, D. Y. J. Am. Chem. Soc. 2001,
123, 6939–6940.
Sau, A.; Williams, R.; Palo-Nieto, C.; Franconetti, A.;
Medina, S.; Galan, M. C. Angew. Chemie 2017, 129,
3694–3698.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
C.S.B and N.L.B.P. both thank the U.S. National Institutes
of Health Common Fund in Glycosciences (5U01GM116248
and 5U01-GM120414) for partial support of this work and to
allow S.Y. to work in Bloomington. N.L.B.P. is grateful to the
Joan and Marvin Carmack Chair funds for partial support of
(22)
(23)
this work. C.S.B also thanks NIGMS (5R01-GM115779) and
the U. S. National Science Foundation (NSF CHE-1566233)
for additional support. We are also thankful to Zachary
Wooke, Ashley DeYoung, and Gavin Stamper, for their
assistance in setting up the initial flow systems.
(24)
(25)
Notes and references
(26)
(27)
(28)
(29)
McDonald, F. E.; Wu, M. Org. Lett. 2002, 4 (22),
3979–3981.
Chen, G.; Franck, R. W.; Yang, G.; Blumenstein, M.
Can. J. Chem. 2002, 80 (8), 894–899.
Yalamanchili, S.; Lloyd, D.; Bennett, C. S. Org. Lett.
2019, 21, 3674-3677.
Saliba, R. C.; Wooke, Z. J.; Nieves, G. A.; Chu, A.-H.
A.; Bennett, C. S.; Pohl, N. L. B. Org. Lett. 2018, 20 (,
800–803.
Ganguly, D.; Tang, H.; Rodriguez, M. J. Synth.
Commun. 2007, 37, 4219–4226.
Noecker, L.; Duarte, F.; Bolton, S. A.; McMahon, W.
G.; Diaz, M. T.; Giuliano, R. M. J. Org. Chem. 1999,
64, 6275–6282.
Yadav, J. S.; Subba Reddy, B. V; Vijaya Bhasker, E.;
Raghavendra, S.; Narsaiah, A. V. Tetrahedron Lett.
2007, 48, 677–680.
Paul, S.; Jayaraman, N. Carbohydr. Res. 2004, 339,
2197–2204.
Panza, M.; Pistorio, S. G.; Stine, K. J.; Demchenko, A.
V.. Chem. Rev. 2018, 118, 8105–8150.
Xie, T.; Zheng, C.; Chen, K.; He, H.; Gao, S. Angew.
Chemie Int. Ed. 2020, 11, 4360-4364..
(1)
(2)
(3)
(4)
(5)
(6)
(7)
Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc.
Rev. 2013, 42, 8849–8869.
Gutmann, B.; Cantillo, D.; Kappe, C. O. Angew.
Chemie Int. Ed. 2015, 54, 6688–6728.
Porta, R.; Benaglia, M.; Puglisi, A. Org. Process Res.
Dev. 2016, 20, 2–25.
Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger,
P. H. Chem. Rev. 2017, 117, 11796–11893.
Yoshida, J.; Kim, H.; Nagaki, A. ChemSusChem 2011,
4, 331–340.
Lummiss, J. A. M.; Morse, P. D.; Beingessner, R. L.;
Jamison, T. F.. Chem. Rec. 2017, 17, 667–680.
Cole, K. P.; Groh, J. M.; Johnson, M. D.; Burcham, C.
L.; Campbell, B. M.; Diseroad, W. D.; Heller, M. R.;
Howell, J. R.; Kallman, N. J.; Koenig, T. M.; et al.
Science. 2017, 356, 1144 LP – 1150.
(30)
(31)
(32)
(33)
(34)
(35)
(8)
(9)
Morse, P. D.; Beingessner, R. L.; Jamison, T. F. Isr. J.
Chem. 2017, 57, 218–227.
Nagy, K. D.; Shen, B.; Jamison, T. F.; Jensen, K. F.
Org. Process Res. Dev. 2012, 16, 976–981.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins